Home
Class 8
MATHS
यदि (x)/(y)=((3)/(2))^(2)div ((5)/(7))^(...

यदि `(x)/(y)=((3)/(2))^(2)div ((5)/(7))^(0)`, तब `((y)/(x))^(2)` का मान क्या होगा -

A

`(81)/(16)`

B

`(4)/(9)`

C

`(16)/(9)`

D

`(16)/(81)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{x}{y} = \left(\frac{3}{2}\right)^2 \div \left(\frac{5}{7}\right)^0 \] ### Step 1: Simplify the Right Side First, we simplify the right side of the equation. We know that any number raised to the power of 0 is 1, so: \[ \left(\frac{5}{7}\right)^0 = 1 \] Thus, the equation simplifies to: \[ \frac{x}{y} = \left(\frac{3}{2}\right)^2 \div 1 = \left(\frac{3}{2}\right)^2 \] ### Step 2: Calculate \(\left(\frac{3}{2}\right)^2\) Now we calculate \(\left(\frac{3}{2}\right)^2\): \[ \left(\frac{3}{2}\right)^2 = \frac{3^2}{2^2} = \frac{9}{4} \] So, we have: \[ \frac{x}{y} = \frac{9}{4} \] ### Step 3: Find \(\frac{y}{x}\) To find \(\frac{y}{x}\), we take the reciprocal of \(\frac{x}{y}\): \[ \frac{y}{x} = \frac{4}{9} \] ### Step 4: Calculate \(\left(\frac{y}{x}\right)^2\) Now we need to find \(\left(\frac{y}{x}\right)^2\): \[ \left(\frac{y}{x}\right)^2 = \left(\frac{4}{9}\right)^2 = \frac{4^2}{9^2} = \frac{16}{81} \] ### Final Answer Thus, the value of \(\left(\frac{y}{x}\right)^2\) is: \[ \frac{16}{81} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

यदि x+(1)/(x)=sqrt(3) है तब x^(3)+(1)/(x^(3)) का मान होगा -

यदि 25 ^(-2x) = ( 5 ^((48)/(2)))/(5 ^((26)/(2)). 25 ^((19)/(2)) है तब x = ?

If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x).b^(y), find x + y.

Simplify : x^(5) div (x^(2) xx y^(2)) xx y^(3)

Simplify : (x^(5) div x^(2)) xx y^(2) xx y^(3)

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2))) div (sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)