Home
Class 8
MATHS
वह कोण ज्ञात करो जो अपने सम्पूरक का (2)/...

वह कोण ज्ञात करो जो अपने सम्पूरक का `(2)/(3)` हो।

A

`40^(@)`

B

`33^(@)`

C

`72^(@)`

D

`80^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle that is \( \frac{2}{3} \) of its supplement, we can follow these steps: ### Step 1: Understand the concept of supplementary angles Supplementary angles are two angles whose sum is \( 180^\circ \). If we denote the angle we are trying to find as \( x \), then its supplement will be \( 180^\circ - x \). ### Step 2: Set up the equation According to the problem, the angle \( x \) is \( \frac{2}{3} \) of its supplement. We can express this relationship with the following equation: \[ x = \frac{2}{3}(180^\circ - x) \] ### Step 3: Distribute the right side Now, we will distribute \( \frac{2}{3} \) on the right side of the equation: \[ x = \frac{2}{3} \times 180^\circ - \frac{2}{3}x \] This simplifies to: \[ x = 120^\circ - \frac{2}{3}x \] ### Step 4: Combine like terms To combine like terms, we will add \( \frac{2}{3}x \) to both sides: \[ x + \frac{2}{3}x = 120^\circ \] This can be rewritten as: \[ \frac{3}{3}x + \frac{2}{3}x = 120^\circ \] Which simplifies to: \[ \frac{5}{3}x = 120^\circ \] ### Step 5: Solve for \( x \) To isolate \( x \), we multiply both sides by \( \frac{3}{5} \): \[ x = 120^\circ \times \frac{3}{5} \] Calculating this gives: \[ x = \frac{360^\circ}{5} = 72^\circ \] ### Conclusion The angle \( x \) that is \( \frac{2}{3} \) of its supplement is \( 72^\circ \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

वह सबसे बड़ी संख्या ज्ञात करो जो सबसे बड़ी चार अंकों की संख्या तथा पाँच अंकों की संख्या को पूर्णत: विभाजित करती है-

x का मान ज्ञात करो - (2)/(3)[4x-1] -[4x-(1-3x)/(2)]=(x-7)/(2)

यदि किसी भिन्न का अंश, हर से 2 कम है और यदि हर में 1 जोडा जाए तो यह (1)/(2) हो जाता है तब वह भिन्न होगी ?