Home
Class 9
MATHS
यदि 25 ^(-2x) = ( 5 ^((48)/(2)))/(5 ^((2...

यदि `25 ^(-2x) = ( 5 ^((48)/(2)))/(5 ^((26)/(2)). 25 ^((19)/(2))`है तब x = ?

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 25^{-2x} = \frac{5^{(48/2)}}{5^{(26/2)} \cdot 25^{(19/2)}} \), we will follow these steps: ### Step 1: Rewrite 25 in terms of 5 We know that \( 25 = 5^2 \). Therefore, we can rewrite \( 25^{-2x} \) as: \[ (5^2)^{-2x} = 5^{-4x} \] ### Step 2: Simplify the right side of the equation Now, let's simplify the right side: \[ \frac{5^{(48/2)}}{5^{(26/2)} \cdot 25^{(19/2)}} \] Calculating the exponents: \[ \frac{5^{24}}{5^{13} \cdot (5^2)^{(19/2)}} \] Now, simplify \( (5^2)^{(19/2)} \): \[ (5^2)^{(19/2)} = 5^{19} \] So, the right side becomes: \[ \frac{5^{24}}{5^{13} \cdot 5^{19}} = \frac{5^{24}}{5^{32}} = 5^{24 - 32} = 5^{-8} \] ### Step 3: Set the exponents equal to each other Now we have: \[ 5^{-4x} = 5^{-8} \] Since the bases are the same, we can set the exponents equal to each other: \[ -4x = -8 \] ### Step 4: Solve for x Now, divide both sides by -4: \[ x = \frac{-8}{-4} = 2 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

यदि x + (1)/(x) = 2 है तब x ^(2) + (1)/( x ^(2)) = ?

Solve: (3x)/(10)+(2x)/5=(7x)/(25)+(29)/(25)

यदि (x)/(y)=((3)/(2))^(2)div ((5)/(7))^(0) , तब ((y)/(x))^(2) का मान क्या होगा -

Find the product : (i) (x+3)(x^(2)-3x+9) " " (ii) (7+5b)(49-35b+25b^(2)) (iii) (5a+(1)/(2)) (25a^(2)-(5a)/(2)+(1)/(4)) " " .

Solve for x : (root3((3)/(5)))^(2x+2)=(25)/(9)

Solve : (x-5)(x-6)=25/((24)^2)

((-2)/5)^7-:((-2)/5)^5 is equal to (a) 4/(25) (b) (-4)/(25) (c) ((-2)/5)^(12) (d) (25)/4

Solve : (x+3)/(7)-(3x-5)/(5)=(2x-5)/(3)-25

Solve : 2x+ 7y =11 5x + (35)/(2) y = 25

f(x)=sqrt(25-x^(2)) in [1,5]