Home
Class 9
MATHS
3^2xx2^2div(6^2-9)+1^2=33...

`3^2xx2^2div(6^2-9)+1^2=33`

A

`-` and `div`

B

`+` and `xx`

C

`xx` and `div`

D

`+` and -

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3^2 \times 2^2 \div (6^2 - 9) + 1^2 = 33\), we will follow the order of operations (BODMAS/BIDMAS). Let's break it down step by step. ### Step 1: Calculate the powers First, we calculate the squares: - \(3^2 = 9\) - \(2^2 = 4\) - \(6^2 = 36\) - \(1^2 = 1\) So, we can rewrite the equation as: \[ 9 \times 4 \div (36 - 9) + 1 = 33 \] ### Step 2: Calculate the expression inside the parentheses Now, we solve the expression inside the parentheses: \[ 36 - 9 = 27 \] Now the equation looks like: \[ 9 \times 4 \div 27 + 1 = 33 \] ### Step 3: Perform the multiplication Next, we perform the multiplication: \[ 9 \times 4 = 36 \] So we have: \[ 36 \div 27 + 1 = 33 \] ### Step 4: Perform the division Now we perform the division: \[ 36 \div 27 = \frac{36}{27} = \frac{4}{3} \quad (\text{after simplifying}) \] Now the equation becomes: \[ \frac{4}{3} + 1 = 33 \] ### Step 5: Add the fractions To add \(\frac{4}{3}\) and \(1\), we convert \(1\) to a fraction: \[ 1 = \frac{3}{3} \] So we have: \[ \frac{4}{3} + \frac{3}{3} = \frac{7}{3} \] ### Step 6: Check if it equals 33 Now we check: \[ \frac{7}{3} \neq 33 \] Since this does not equal 33, we need to change the operations as discussed in the video. ### Step 7: Change the operations We will change the division to subtraction and subtraction to division: \[ 3^2 \times 2^2 - (6^2 \div 9) + 1^2 = 33 \] ### Step 8: Recalculate with the new operations Now we recalculate: 1. Calculate \(6^2 \div 9\): \[ 36 \div 9 = 4 \] 2. Substitute back into the equation: \[ 9 \times 4 - 4 + 1 = 33 \] 3. Calculate \(9 \times 4\): \[ 36 - 4 + 1 = 33 \] 4. Finally, simplify: \[ 36 - 4 = 32 \quad \text{and} \quad 32 + 1 = 33 \] ### Conclusion Thus, the equation holds true, and we have verified that the correct operations lead to the result of 33. ---

To solve the equation \(3^2 \times 2^2 \div (6^2 - 9) + 1^2 = 33\), we will follow the order of operations (BODMAS/BIDMAS). Let's break it down step by step. ### Step 1: Calculate the powers First, we calculate the squares: - \(3^2 = 9\) - \(2^2 = 4\) - \(6^2 = 36\) - \(1^2 = 1\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

Simplify : x^(5) div (x^(2) xx y^(2)) xx y^(3)

Evaluate the following expressions. 2^(4)xx(8div2-1)//(9-3)=

{:("Quantity A","Quantity B"),(3^(3)xx9^(6)xx2^(4)xx4^(2),9^(3)xx3^(6)xx2^(2)xx4^(4)):}

Observe the following pattern 1^2=1/6[1xx(1+1)xx(2xx1+1)] , 1^2+2^2=1/6[2xx(2+1)xx(2xx2+1)] , 1^2+2^2+3^2=1/6[3xx(3+1)xx(2xx3+1)], 1^2+2^2+3^2+4^2=1/6[4xx(4+1)xx(2xx4+1)], and find the values of each of the following 1^2+2^2+3^2+4^2+ddot+10^2, 5^2+6^2+7^2+8^2+9^2+10^2+11^2+12^2

Simplify the following 3.6a^(3)b^(2)c div 1.2 ab^(2)c^(3)

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Find the value of each of the following: (i)((-1)/2)^2xx2^3xx(3/4)^2 (ii) ((-3)/5)^4xx(4/9)^4xx((-15)/(18))^2

Value of 1+5/(4(1^2+2^2))+7/(5(1^2+2^2+3^2))+9/(6(1^2+2^2+3^2+4^2))+oo is: 3 b. 1/6 c. 6 d. 3/2

If (9^n\ xx\ 3^2\ xx\ (3^(-n/2))^(-2)-\ 27^n)/(3^(3m)\ xx\ 2^3)=1/(27) , prove that m-n=1