Home
Class 10
MATHS
किसी घनात्मक पूर्णांक n के लिए यदि, (1...

किसी घनात्मक पूर्णांक n के लिए यदि,
`(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6)) +(1)/(sqrt(6)+sqrt(7)) +..... + (1)/(sqrt(n)+sqrt(n+1))=5` है तो n का मान क्या होगा?

A

45

B

46

C

47

D

48

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \ldots + \frac{1}{\sqrt{n} + \sqrt{n+1}} = 5, \] we will simplify each term in the sum and find the value of \( n \). ### Step 1: Simplify each term We can simplify each term of the form \[ \frac{1}{\sqrt{k} + \sqrt{k+1}}. \] To simplify, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{\sqrt{k} + \sqrt{k+1}} \cdot \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} = \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k} + \sqrt{k+1})(\sqrt{k+1} - \sqrt{k})}. \] The denominator simplifies as follows: \[ (\sqrt{k+1})^2 - (\sqrt{k})^2 = (k + 1) - k = 1. \] Thus, we have: \[ \frac{1}{\sqrt{k} + \sqrt{k+1}} = \sqrt{k+1} - \sqrt{k}. \] ### Step 2: Rewrite the sum Now, we can rewrite the entire sum: \[ \sum_{k=4}^{n} \left( \sqrt{k+1} - \sqrt{k} \right). \] This is a telescoping series. When we expand it, we get: \[ (\sqrt{5} - \sqrt{4}) + (\sqrt{6} - \sqrt{5}) + (\sqrt{7} - \sqrt{6}) + \ldots + (\sqrt{n+1} - \sqrt{n}). \] ### Step 3: Simplify the telescoping series In a telescoping series, most terms cancel out: \[ \sqrt{n+1} - \sqrt{4}. \] ### Step 4: Set the equation Now we set this equal to 5: \[ \sqrt{n+1} - 2 = 5. \] ### Step 5: Solve for \( n \) Adding 2 to both sides gives: \[ \sqrt{n+1} = 7. \] Now, squaring both sides results in: \[ n + 1 = 49. \] Subtracting 1 from both sides, we find: \[ n = 48. \] ### Final Answer Thus, the value of \( n \) is \[ \boxed{48}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

a=9-4sqrt(5) , sqrt(a)-1/sqrt(a)=?

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5