Home
Class 10
MATHS
यदि (sqrt(28-10sqrt(3))+sqrt(7+4sqrt(3))...

यदि `(sqrt(28-10sqrt(3))+sqrt(7+4sqrt(3)))/(sqrt(16+6sqrt(7)))=a+bsqrt(7)` है, तब `(2a+b)=`?

A

7

B

14

C

`15(1)/(2)`

D

`17(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sqrt{28 - 10\sqrt{3}} + \sqrt{7 + 4\sqrt{3}}}{\sqrt{16 + 6\sqrt{7}}} = a + b\sqrt{7} \] we will simplify each term step by step. ### Step 1: Simplifying \(\sqrt{28 - 10\sqrt{3}}\) We can express \(28 - 10\sqrt{3}\) in the form \((a - b\sqrt{c})^2\). Let’s assume: \[ \sqrt{28 - 10\sqrt{3}} = \sqrt{a} - \sqrt{b} \] Then squaring both sides gives: \[ 28 - 10\sqrt{3} = a + b - 2\sqrt{ab} \] From here, we can equate the rational and irrational parts: 1. \(a + b = 28\) 2. \(-2\sqrt{ab} = -10\sqrt{3} \Rightarrow \sqrt{ab} = 5\sqrt{3} \Rightarrow ab = 75\) Now, we need to solve the system of equations: \[ x + y = 28 \] \[ xy = 75 \] Let \(x = a\) and \(y = b\). The quadratic equation is: \[ t^2 - 28t + 75 = 0 \] Calculating the discriminant: \[ D = 28^2 - 4 \cdot 75 = 784 - 300 = 484 \] Now solving for \(t\): \[ t = \frac{28 \pm \sqrt{484}}{2} = \frac{28 \pm 22}{2} \] This gives us: \[ t = 25 \quad \text{or} \quad t = 3 \] Thus, \(a = 25\) and \(b = 3\). Therefore: \[ \sqrt{28 - 10\sqrt{3}} = 5 - \sqrt{3} \] ### Step 2: Simplifying \(\sqrt{7 + 4\sqrt{3}}\) Similarly, we can express \(7 + 4\sqrt{3}\): Assuming: \[ \sqrt{7 + 4\sqrt{3}} = \sqrt{a} + \sqrt{b} \] Squaring gives: \[ 7 + 4\sqrt{3} = a + b + 2\sqrt{ab} \] Equating parts: 1. \(a + b = 7\) 2. \(2\sqrt{ab} = 4\sqrt{3} \Rightarrow \sqrt{ab} = 2\sqrt{3} \Rightarrow ab = 12\) Now we solve: \[ x + y = 7 \] \[ xy = 12 \] The quadratic equation is: \[ t^2 - 7t + 12 = 0 \] Calculating the discriminant: \[ D = 7^2 - 4 \cdot 12 = 49 - 48 = 1 \] Solving gives: \[ t = \frac{7 \pm 1}{2} = 4 \quad \text{or} \quad 3 \] Thus, \(a = 4\) and \(b = 3\). Therefore: \[ \sqrt{7 + 4\sqrt{3}} = 2 + \sqrt{3} \] ### Step 3: Simplifying \(\sqrt{16 + 6\sqrt{7}}\) Assuming: \[ \sqrt{16 + 6\sqrt{7}} = \sqrt{a} + \sqrt{b} \] Squaring gives: \[ 16 + 6\sqrt{7} = a + b + 2\sqrt{ab} \] Equating parts: 1. \(a + b = 16\) 2. \(2\sqrt{ab} = 6\sqrt{7} \Rightarrow \sqrt{ab} = 3\sqrt{7} \Rightarrow ab = 63\) Now we solve: \[ x + y = 16 \] \[ xy = 63 \] The quadratic equation is: \[ t^2 - 16t + 63 = 0 \] Calculating the discriminant: \[ D = 16^2 - 4 \cdot 63 = 256 - 252 = 4 \] Solving gives: \[ t = \frac{16 \pm 2}{2} = 9 \quad \text{or} \quad 7 \] Thus, \(a = 9\) and \(b = 7\). Therefore: \[ \sqrt{16 + 6\sqrt{7}} = 3 + \sqrt{7} \] ### Step 4: Putting it all together Now substituting back into the original equation: \[ \frac{(5 - \sqrt{3}) + (2 + \sqrt{3})}{3 + \sqrt{7}} = \frac{7}{3 + \sqrt{7}} \] To rationalize the denominator: \[ \frac{7(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})} = \frac{7(3 - \sqrt{7})}{9 - 7} = \frac{7(3 - \sqrt{7})}{2} \] This simplifies to: \[ \frac{21 - 7\sqrt{7}}{2} = \frac{21}{2} - \frac{7\sqrt{7}}{2} \] ### Step 5: Identifying \(a\) and \(b\) From the equation: \[ a + b\sqrt{7} = \frac{21}{2} - \frac{7\sqrt{7}}{2} \] We can identify: \[ a = \frac{21}{2}, \quad b = -\frac{7}{2} \] ### Final Calculation Now, we need to find \(2a + b\): \[ 2a + b = 2 \cdot \frac{21}{2} - \frac{7}{2} = 21 - \frac{7}{2} = \frac{42}{2} - \frac{7}{2} = \frac{35}{2} \] Thus, the final answer is: \[ \frac{35}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

1/(sqrt(7)+sqrt(3))\times (sqrt(7)-sqrt(3))/(sqrt(7)-sqrt(3))

log_7log_7sqrt(7(sqrt(7sqrt(7))))=

Find: (sqrt7 +sqrt3)(3-sqrt3)

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5

(3-sqrt7)(3+sqrt7)=?

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5