Home
Class 10
MATHS
यदि x+(1)/(x)=sqrt(3) है तब x^(3)+(1)/(x...

यदि `x+(1)/(x)=sqrt(3)` है तब `x^(3)+(1)/(x^(3))` का मान होगा -

A

`2sqrt(3)`

B

`sqrt(3)(sqrt(3)-1)`

C

`3sqrt(3)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^3 + \frac{1}{x^3} \) given that \( x + \frac{1}{x} = \sqrt{3} \), we can follow these steps: ### Step 1: Square the given equation We start with the equation: \[ x + \frac{1}{x} = \sqrt{3} \] Now, we square both sides: \[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{3})^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 3 \] ### Step 2: Rearrange to find \( x^2 + \frac{1}{x^2} \) Now, we can rearrange the equation: \[ x^2 + \frac{1}{x^2} = 3 - 2 = 1 \] ### Step 3: Use the identity for cubes Next, we use the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 + \frac{1}{x^2} \right) - \left( x + \frac{1}{x} \right) \] Substituting the values we have: \[ x^3 + \frac{1}{x^3} = \left( \sqrt{3} \right)(1) - \sqrt{3} \] ### Step 4: Simplify the expression Now, we simplify: \[ x^3 + \frac{1}{x^3} = \sqrt{3} - \sqrt{3} = 0 \] ### Final Answer Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

यदि x + (1)/(x) = 2 है तब x ^(2) + (1)/( x ^(2)) = ?

यदि (x)/(y)=((3)/(2))^(2)div ((5)/(7))^(0) , तब ((y)/(x))^(2) का मान क्या होगा -

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If x=(1)/(sqrt(3)+sqrt(2)) . Then find (1)/(x) .

lim _(x -> 0) (sqrt(1+x^3) - sqrt(1-x^3))/(x^3)

If x = sqrt(3)- sqrt(2) find the value of x^(3)+ (1)/(x^(3))