Home
Class 10
MATHS
Value of (4096) ^(((1)/(sqrt3))^((sqrt2)...

Value of `(4096) ^(((1)/(sqrt3))^((sqrt2) ^(2)))` is

A

8

B

6

C

24

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (4096)^{\left(\frac{1}{\sqrt{3}}\right)^{\left(\sqrt{2}\right)^2}} \), we can follow these steps: ### Step 1: Simplify the exponent First, we simplify the exponent \( \left(\frac{1}{\sqrt{3}}\right)^{\left(\sqrt{2}\right)^2} \). Since \( \left(\sqrt{2}\right)^2 = 2 \), we can rewrite the exponent as: \[ \left(\frac{1}{\sqrt{3}}\right)^{2} = \frac{1}{3} \] ### Step 2: Rewrite the original expression Now we can rewrite the original expression using the simplified exponent: \[ (4096)^{\frac{1}{3}} \] ### Step 3: Express 4096 as a power of 2 Next, we need to express 4096 as a power of 2. We know that: \[ 4096 = 2^{12} \] ### Step 4: Substitute back into the expression Now we substitute \( 4096 \) in the expression: \[ (2^{12})^{\frac{1}{3}} \] ### Step 5: Apply the power of a power property Using the property of exponents \( (a^m)^n = a^{m \cdot n} \), we can simplify further: \[ 2^{12 \cdot \frac{1}{3}} = 2^{4} \] ### Step 6: Calculate the final value Now we calculate \( 2^4 \): \[ 2^4 = 16 \] Thus, the value of \( (4096)^{\left(\frac{1}{\sqrt{3}}\right)^{\left(\sqrt{2}\right)^2}} \) is \( \boxed{16} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is ________.

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^(-1)(-2)