Home
Class 10
MATHS
When a + b + c = (x)/(2) , then the val...

When `a + b + c = (x)/(2) , ` then the value of `((x)/(3 ) - 2a) ^(3) + ((x)/(3) - 2b) ^(3) + ((x)/(3) - 2c) ^(3) - 3 ((x)/(3) - 2a) ((x)/(3) - 2b)((x)/(3) - 2c)` is

A

0

B

1

C

3x

D

6x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's start with the expression we need to evaluate: Given: \[ a + b + c = \frac{x}{2} \] We need to find the value of: \[ \left(\frac{x}{3} - 2a\right)^3 + \left(\frac{x}{3} - 2b\right)^3 + \left(\frac{x}{3} - 2c\right)^3 - 3\left(\frac{x}{3} - 2a\right)\left(\frac{x}{3} - 2b\right)\left(\frac{x}{3} - 2c\right) \] ### Step 1: Identify the terms Let: \[ A = \frac{x}{3} - 2a, \quad B = \frac{x}{3} - 2b, \quad C = \frac{x}{3} - 2c \] ### Step 2: Use the identity for cubes We can use the identity: \[ A^3 + B^3 + C^3 - 3ABC = (A + B + C)(A^2 + B^2 + C^2 - AB - AC - BC) \] ### Step 3: Calculate \(A + B + C\) Now, calculate \(A + B + C\): \[ A + B + C = \left(\frac{x}{3} - 2a\right) + \left(\frac{x}{3} - 2b\right) + \left(\frac{x}{3} - 2c\right) \] \[ = 3 \cdot \frac{x}{3} - 2(a + b + c) = x - 2 \cdot \frac{x}{2} = x - x = 0 \] ### Step 4: Substitute back into the identity Since \(A + B + C = 0\), we can substitute this into our identity: \[ A^3 + B^3 + C^3 - 3ABC = 0 \cdot (A^2 + B^2 + C^2 - AB - AC - BC) = 0 \] ### Step 5: Conclusion Thus, the value of the entire expression simplifies to: \[ A^3 + B^3 + C^3 - 3ABC = 0 \] ### Final Answer The value of the expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=3^(x-1)+3^(-x-1) , then the least value of y is (a) 2 (b) 6 (c) 2//3 (d) 3//2

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3

The zero of 3x+2 is (a) 2/3 (b) 3/2 (c) -2/3 (d) (-3)/2

If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a) 3 b. 2 c. 1 d. -2

Find the value of (x-a)^3+(x-b)^3+(x-c)^3-3(x-a)(x-b)(x-c) when a+b+c=3x

If (x+2)/(x-2)=2/3 (a) -10\ (b) 10 (c) 4/3 (d) -4/3

The value of (lim)_(x->(3pi)/4)(1+t a n x1/3)/(1-2cos^2x) is (a) -1//2 (b.) -2//3 (c). -3//2 (d). -1//3

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

If (2/3)^x\ \ (3/2)^(2x)=(81)/(16), . then x= (a) 2 (b) 3 (c) 4 (d) 1

If 2^x - 4^(2x-1) = 0 then x = ? (a) 2/3 (b) -2/3 (c) 3/2 (d) -3/2