Home
Class 10
MATHS
If sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) =...

If `sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) = 7 ^(x) ` then find the value of x

A

`1/5`

B

`(32)/(31)`

C

`(9)/(8)`

D

`(1)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7}}}}} = 7^x \), we will simplify the left-hand side step by step. ### Step 1: Rewrite the expression We can start by rewriting the nested square roots. The expression can be simplified as follows: \[ \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7}}}}} = \sqrt{7 \cdot \sqrt{7 \cdot \sqrt{7 \cdot \sqrt{7 \cdot \sqrt{7}}}}} \] ### Step 2: Simplify the innermost square root Let’s denote the innermost square root: \[ y = \sqrt{7} \] Then, \[ \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7}}}} = \sqrt{7 \cdot \sqrt{7 \cdot \sqrt{7 \cdot y}}} \] ### Step 3: Continue simplifying Continuing this process, we can express the square roots in terms of powers of 7: \[ \sqrt{7} = 7^{1/2} \] Thus, we can express the entire nested square root as: \[ \sqrt{7 \cdot 7^{1/2} \cdot 7^{1/4} \cdot 7^{1/8} \cdots} \] ### Step 4: Convert all square roots to exponents Each square root can be expressed as: \[ \sqrt{7} = 7^{1/2}, \quad \sqrt{7 \sqrt{7}} = 7^{1/2 + 1/4}, \quad \sqrt{7 \sqrt{7 \sqrt{7}}} = 7^{1/2 + 1/4 + 1/8}, \ldots \] ### Step 5: Sum the exponents The exponents form a geometric series: \[ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \] This series can be summed up using the formula for the sum of an infinite geometric series: \[ S = \frac{a}{1 - r} \] where \( a = \frac{1}{2} \) and \( r = \frac{1}{2} \): \[ S = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1 \] ### Step 6: Combine the results Thus, the total exponent is: \[ \sqrt{7^{1 + 1}} = \sqrt{7^1} = 7^{1/2} \] ### Step 7: Final simplification Now, we can express the entire left-hand side as: \[ \sqrt{7^{\frac{9}{4}}} = 7^{\frac{9}{8}} \] ### Step 8: Equate the powers Now we have: \[ 7^{\frac{9}{8}} = 7^x \] Since the bases are the same, we can equate the exponents: \[ x = \frac{9}{8} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{9}{8}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=7-4sqrt3 then find the value of sqrtx+1/sqrtx

If a=1+sqrt 7 , find the value of -6/a

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

(3-sqrt7)(3+sqrt7)=?

If x = sqrt(7)+(1)/(sqrt(7)) , then the value of (128)^(x^(2)) is-

log_7log_7sqrt(7(sqrt(7sqrt(7))))=

Find: (sqrt7 +sqrt3)(3-sqrt3)

If a = sqrt((7+4sqrt3)/(7-4sqrt3)) then the value of [a(a-14)]^2 is

If sqrt(x+3)+sqrt(7-x)=4 , what is the positive value of x^(3) ?

sqrt x + y = 7 x+ sqrty = 11