Home
Class 10
MATHS
the product of (1- x + x ^(2)) , (1 - x ...

the product of `(1- x + x ^(2)) , (1 - x ^(2) + x ^(4)) and (1 + x + x ^(2))` is

A

`x ^(8) + x ^(4) + x^(2) + 1`

B

`x ^(8) - x ^(4) +1 `

C

`x ^(8) + x ^(4) -1`

D

`x ^(8) + x ^(4) +1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the expressions \((1 - x + x^2)\), \((1 - x^2 + x^4)\), and \((1 + x + x^2)\), we will follow these steps: ### Step 1: Rearranging the Terms First, we can rearrange the terms for easier multiplication: \[ (1 + x^2 - x) \cdot (1 + x^2 + x) \cdot (1 - x^2 + x^4) \] ### Step 2: Multiply the First Two Expressions Next, we will multiply the first two expressions: \[ (1 + x^2 - x)(1 + x^2 + x) \] Using the identity \((a - b)(a + b) = a^2 - b^2\), where \(a = 1 + x^2\) and \(b = x\): \[ = (1 + x^2)^2 - x^2 \] ### Step 3: Expand \((1 + x^2)^2\) Now, we expand \((1 + x^2)^2\): \[ (1 + x^2)^2 = 1^2 + 2 \cdot 1 \cdot x^2 + (x^2)^2 = 1 + 2x^2 + x^4 \] Thus, we have: \[ (1 + x^2)^2 - x^2 = (1 + 2x^2 + x^4) - x^2 = 1 + x^2 + x^4 \] ### Step 4: Multiply with the Third Expression Now we will multiply this result with the third expression: \[ (1 + x^2 + x^4)(1 - x^2 + x^4) \] We can use the distributive property to expand this product. ### Step 5: Expand the Product Expanding the product: \[ = 1(1 - x^2 + x^4) + x^2(1 - x^2 + x^4) + x^4(1 - x^2 + x^4) \] Calculating each term: 1. \(1(1 - x^2 + x^4) = 1 - x^2 + x^4\) 2. \(x^2(1 - x^2 + x^4) = x^2 - x^4 + x^6\) 3. \(x^4(1 - x^2 + x^4) = x^4 - x^6 + x^8\) ### Step 6: Combine Like Terms Now, combine all these results: \[ (1 - x^2 + x^4) + (x^2 - x^4 + x^6) + (x^4 - x^6 + x^8) \] Combining like terms: - Constant term: \(1\) - \(x^2\) terms: \(-x^2 + x^2 = 0\) - \(x^4\) terms: \(x^4 - x^4 + x^4 = x^4\) - \(x^6\) terms: \(x^6 - x^6 = 0\) - \(x^8\) term: \(x^8\) Thus, the final result is: \[ 1 + x^4 + x^8 \] ### Final Answer The product of \((1 - x + x^2)\), \((1 - x^2 + x^4)\), and \((1 + x + x^2)\) is: \[ 1 + x^4 + x^8 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the products: (1+x)(1-x+x^2)

Find the products: (1-x)\ (1+x+x^2)

Find the products: (1-x)\ (1+x+x^2)

Find the product (x+1/2)(x-1/2)

Find the product (x+1/2)(x-1/2)

If x^(2)=k+1 , then (x^(4)-1)/(x^(2)+1) =

The equation x ^(4) -2x ^(3)-3x^2 + 4x -1=0 has four distinct real roots x _(1), x _(2), x _(3), x_(4) such that x _(1) lt x _(2) lt x _(3)lt x _(4) and product of two roots is unity, then : x _(1)x _(2) +x_(1)x_(3) + x_(2) x _(4) +x_(3) x _(4)=

Find the products: (x-1/x)\ (x+1/x)(x^2+1/(x^2))\ (x^4+1/(x^4))

Find the products: (x^2-1)(x^4+x^2+1)

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :