Home
Class 8
MATHS
Show that : (a+b)^2 - 4ab=(a-b)^2....

Show that :
`(a+b)^2 - 4ab=(a-b)^2`.

Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    MBD|Exercise EXERCISE|96 Videos
  • COMPARING QUANTITIES

    MBD|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

If a, b, c and d are in G.P. show that (a^2+ b^2+ c^2) (b^2 + c^2 + d^2)= ( ab + bc + cd)^2 .

Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-b^2)|

Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2) .

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| = 4a^(2)b^(2)c^(2)

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2