Home
Class 8
MATHS
Show that : (x-y) (x+y) +(y-z)(y+z)+(z-x...

Show that :
`(x-y) (x+y) +(y-z)(y+z)+(z-x)(z+x)=0.`

Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    MBD|Exercise EXERCISE|96 Videos
  • COMPARING QUANTITIES

    MBD|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

Prove that : tan (x-y)+tan (y -z) + tan (z-x)= tan (x-y)tan (y -z) tan (z-x) .

Prove that : sin x sin y sin (x - y) + sin y sin z sin (y- z)+ sin z sin x sin (z - x) + sin (x - y) sin (y-z)sin (z- x) = 0 .

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

Without expanding, prove that Delta = abs{:(x+y, y + z, z+ x),(z, x , y),(1,1,1):} = 0