Home
Class 12
MATHS
underset(x to 0)(lim) ("sin"2X)/(2 - sqr...

`underset(x to 0)(lim) ("sin"2X)/(2 - sqrt(4 - x))` is

A

2

B

4

C

8

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

`lim_(x to 0) (sin 2x)/(2-sqrt(4-x)) xx ((2xxsqrt(4-x)))/((2+sqrt(4-x)))`
`rArr lim_(x to 0) (sin 2x xx (2+sqrt(4-x)))/((4-4+x)) rArr lim_( x to 0) (sin 2x xx (2+sqrt(4-x)))/((2x)/(2)) rArr lim_(x to 0) (2xx sqrt(4-x))/((1)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

lim_(xto0)(sin2x)/(1-sqrt(1-x))

If the value of underset(x to 0)lim (sqrt(2+x)-sqrt2)/(x)" is equal to "1/(a sqrt2) then 'a' equals

underset(x to 0)lim x log sin x is equal to

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

Value of underset(x to 0)lim (a^(sin x)-1)/(sin x) is

Evaluate underset( x rarr 2^+ ) ( "lim") ( x-2)/( sqrt( x^(2) -4) +sqrt(x - 2))