Home
Class 11
CHEMISTRY
The ratio of average speed of an oxygen ...

The ratio of average speed of an oxygen molecule to the rms speed of a nitrogen molecule at the same temperature is : `((3pi)/(7))^(1/2)`, `((7)/(3pi))^(1/2)`, `((7)/(3pi))^(1/2)`, `((7pi)/(3))^(1/2)`

A

`((3pi)/(7))^(1/2)`

B

`((7)/(3pi))^(1/2)`

C

`((3)/(7pi))^(1/2)`

D

`((7pi)/(3))^(1/2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`u_(av)= sqrt((8RT)/(piM))" So, "u_(av(O_2))= sqrt((8RT)/(pi xx 32))`
`u_(rms)= sqrt((3RT)/(M))" so "u_(rms(N_2))= sqrt((3RT)/(28))`
`(u_(av(O_2)))/(v_(rms(N_2)))sqrt((8xx 28)/(pi xx 32 xx 3))= sqrt((7)/(3pi))= ((7)/(3pi))^(1/2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The ratio of average speed of an oxygen molecule to the r.m.s. speed of a 'N_2' molecule at the same temperature is

Show that cos ^(2) x+cos ^(2)(x+(pi)/(3))+cos ^(2) (x-(pi)/(3))=(3)/(2)

Prove that cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=(3)/(2)

tan ^(-1)(tan((7 pi)/6)) =

If the sides of the triangle are p,q,sqrt(p^(2)+q^(2)+pq,) then the greatest angle is : a) (pi)/(2) b) (5pi)/(4) c) (2pi)/(3) d) (7pi )/(4)

Prove that (1+"cos"(pi)/(8))(1+"cos"(3pi)/(8))(1+"cos"(5pi)/(8))(1+"cos"(7pi)/(8))=(1)/(8) .

Prove that "sin"^(2)(pi)/(18)+"sin"^(2)(pi)/(9)+"sin"^(2)(7pi)/(18)+"sin"^(2)(4pi)/(9)=2 .

The perimeter of a triangle ABC is 6 times the arithmetic mean of the sine ratios of its angles. If a =1, then A is equal to : a) pi/6 b) pi/3 c) pi/2 d) (2pi)/(3)

Find the value of "cos"^(2)(pi)/(16)+"cos"^(2)(3pi)/(16)+"cos"^(2)(5pi)/(16)+"cos"^(2)(7pi)/(16) .