Home
Class 11
MATHS
T-Ratio of Compoud Angles#!#Tan(A+B)#!#T...

T-Ratio of Compoud Angles#!#Tan(A+B)#!#Tan(A-B)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the angle of elevation of the cloud from a point hm above a lake is A and the angle of depression of its reflection in the lake is B prove that the height of the cloud is h(tan B+tan A)tan B-tan A

If A+B=(pi)/(2)rArr Tan A Tan B=1 , rArr Tan(A-B)=(tan A-tan B)/(1+tan A tan B)=(tan A-tan B)/(2) , rArr tan A=tan B+2tan(A-B) , (tan40^(@)+2tan10^(@))*(tan70^(@)-Tan20^(@))=

If A+B=(pi)/(2)rArr Tan A Tan B=1 , rArr Tan(A-B)=(tan A-tan B)/(1+tan A tan B)=(tan A-tan B)/(2) , rArr tan A=tan B+2tan(A-B) , x= Tan""(5 pi)/(28)+2Tan""(pi)/(7) Then x

If a,B,C are positive acute angles and tan A=(4)/(7),tan B=(1)/(7),tan C=(1)/(8), prove that A+B+C=45

Two bullets are fired at angles theta and 90-theta the ratio of their time of flights is (A) Tan theta:1 (B) 1:Tan theta (C) Tan^(2)theta:1 (D) 1:Tan^(2)theta

In a triangle ABC ,right angled at A ,the altitude through A and internal bisector of /_A have lengths 3 and 4 respectively. Find the length of median through A . (Given that tan(A+B)=(tan A+tan B)/(1-tan A tan B),tan(A-B)=(tan A-tan B)/(1+tan A*tan B))

In a triangle ABC , right angled at A ,the altitude through A and internal bisector of /_A have lengths 3 and 4 respectively. Find the length of median through A. Given that tan(A+B)=(tan A+tan B)/(1-tan A tan B),tan(A-B)=(tan A-tan B)/(1+tan A tan B)

For all values of A and Btan(A+B)=(tan A+tan B)/(1-tan A tan B) and tan(A-B)=(tan A-tan B)/(1+tan A tan B)

If A and B are acute angles and (sin A)/(sin B)=sqrt(2) and (tan A)/(tan B)=sqrt(3), find A and B