Home
Class 12
PHYSICS
In Hydrogen and Hydrogen like atoms, the...

In Hydrogen and Hydrogen like atoms, the ratio of difference of energies `E _(2n ) - E_(n)and E _(2n) E _(n)` varies with its atomic number Zand n as

A

`(Z ^(2))/( n ^(2))`

B

`(Z ^(4))/( n ^(4))`

C

`(Z)/(n)`

D

`((n ^(2))/( Z^(2)))`

Text Solution

Verified by Experts

`E _(n) =(- 13. 6)/( n ^(2)) (Z ^(2)) , E _(2n ) = - (13. 6)/(( 2n ^(2))) Z ^(2) = (-13.6)/(4) ((Z ^(2))/( n ^(2)))`
`E _(2n ) - E _(n) = [(-(13.6)/(4)) (Z ^(2))/( n ^(2))]-[-13.6 ((Z ^(2))/( n ^(2)))], E _(2n ) - E _(n) = (Z ^(2))/(n ^(2)) (13.6 - (136)/(4)) = (10.2 ) ((Z ^(2))/(n ^(2)))`
`(E _(2n )) (E _(n)) = ( (13. 6) ^(2) Z ^(4))/( 4) (Z ^(4))/( n ^(4)) , ((E _(2n ) - E_ (n)))/((E _(2n )) (E _(n))) = ((10.2 ) ((Z ^(2))/( n ^(2))))/(((13 6) ^(2))/( 4) ((Z ^(4))/( n ^(4)))) implies ((E _(2n ) - E _(n )))/( (E _(2n )) (E _(n )))alpha ((n ^(2))/( Z ^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: In hydrogen and hydrogen like species, orbital energy depends only on the quantum number n whereas in multi-electron atoms it depends on quantum numbers n and l. Statement 2 : The principal quantum number determine the size and the energy of the orbital.