Home
Class 7
MATHS
Add: x^2-y^2-1,y^2-1-x^2,1-x^2-y^2...

Add: `x^2-y^2-1,y^2-1-x^2,1-x^2-y^2`

Promotional Banner

Topper's Solved these Questions

  • COMPARING QUANTITITES

    SUBHASH PUBLICATION|Exercise EXAMPLE|54 Videos

Similar Questions

Explore conceptually related problems

Add: 4x^2y,-3xy^2,5xy^2,5x^2y

Show that the circle touch each other: x^2+y^2-6x-2y+1=0 and x^2+y^2-2x-8y+13=0

Prove that the centres of the circles x^2+y^2=1 , x^2+y^2+6x-2y-1=0 and x^2+y^2-12x+4y=1 are collinear

Prove that the radii of the circles x^(2)+y^(2)=1,x^(2)+y^(2)-2x-6y=6andx^(2)+y^(2)-4x-12y=9 are in AP.

Add: 2x(z-x-y) and 2y(z-y-x)

Consider the circleS, x^(2)+(y-1)^(2)=9 (x-1)^(2)+y^(2)=25 . These are such that

The radical axis of the circles x^(2)+y^(2)+2x+2y+1=0 and x^(2)+y^(2)-10x-6y+14=0 is

The area of the region described by : A={(x,y): x^2 +y^2 le 1 and y^2 le 1 -x } is :

Find the area bounded by the curve (x-1)^2+y^2=1" and "x^2+y^2=1 .

If a,b,c gt 0 and x,y,z , in R then the determinant : |((a^x+a^(-x))^2,(a^(x)-a^(-x))^2,1),((b^y+a^(-y))^2,(b^(y)-b^(-y))^2,1),((c^z+c^(-z))^2,(c^(z)-c^(-z))^2,1)| is equal to :