Home
Class 11
PHYSICS
The density of a non-uniform rod of leng...

The density of a non-uniform rod of length 1 m is given by `rho (x) = a (1 + bx^2)` where a and b are constant and ` 0 le x le 1`. The center of mass of the rod will be at

A

`(3(2+b))/(4(3+b))`

B

`(4(2+b))/(3(3+b))`

C

`(3(3+b))/(4(2 +b))`

D

`(4(3+b))/(3(2+b))`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • MOTION OF SYSTEM OF PARTICLES AND RIGID BODY

    MBD|Exercise EXERCISE|15 Videos
  • MOTION IN A STRAIGHT LINE

    MBD|Exercise EXERCISE|14 Videos
  • OSCILLATIONS

    MBD|Exercise EXERCISE|11 Videos

Similar Questions

Explore conceptually related problems

Let f:(0,1)->R be defined by f(x)=(b-x)/(1-bx) , where b is constant such that 0 ltb lt 1 .then ,

solve |x-1|le2 .

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Disuss the continuity of the function f where f is defined by f(x) {{:(3 if 0 le x le 1 ),(4 if 1 lt x lt 3 ),(5 if 3 le x le 10 ):}

Using integration , find the area of the region given below. {(x,y): 0 le y le x^2+1, 0 le y le x+1, 0 le x le 2}

If 0 le x le 3 pi , 0 le y le 3 pi and cos x * sin y=1 , then find the possible number of values of the orederd pair (x,y) .

Draw the graph of the function f(x) = x - |x - x^(2)|, -1 le x le 1 and discuss the continuity or discontinuity of f in the interval -1 le x le 1

Show that sec^-1 (1/(2x^2-1)) = 2 cos^-1 x, 0 le x le 1, x ne = 1/2

Prove that following : 2 sin^-1 x = cos^-1 (1-2x^2), 0 le x le 1