Home
Class 12
PHYSICS
Use Bohr's model of hydrogen atom to obt...

Use Bohr's model of hydrogen atom to obtain the relationship between the angular momentum and the magnetic moment of the revolving electron.

Promotional Banner

Similar Questions

Explore conceptually related problems

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . The angular momentum of the orbital electron is integarl multiple of

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . If 13.6 eV energy is required to ionise the hydrogen atom, then enegy required to remove an electron from n=2 is:

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . When hydrogen atom is the first excited level, it radius is:,

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . What would happen, if the electron in an atom is stationary?

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . The ground state energy of hydroen atom is -13.6 eV. The KE and PE of the electron in this state are

What is the relationship between the current and the magnetic moment of a current carrying circular loop? Use the expression to derive the relation between the magnetic moment of an electron moving in a circle and its related angular momentum?