Home
Class 12
PHYSICS
Let En=(-1 me^4)/(8epsilon0^2 n^2h^2) be...

Let `E_n=(-1 me^4)/(8epsilon_0^2 n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiaton of frequency `(E_2-E_1)/h` falls on it.

A

it will not be absorbed at all

B

some of atoms move to the first excited state

C

all atoms will be excited to the n=2 state

D

no atoms will make a transition to the n=3 state.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the maximum number of emission lines when the excited electron of H atom in n = 6 drops to the ground state ?

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . The ground state energy of hydroen atom is -13.6 eV. The KE and PE of the electron in this state are

The binding energy of a H-atom, considering an electron moving around a fixed nucleus (proton), is B=-(me^4)/(8n^2epsilon_0^2h^2) (m=electron mass) If one decides to work in a frame of reference where the electron is at rest, the proton would be moving around it. By similar arguments, the binding energy would be B=-(me^4)/(8n^2epsilon_0^2h^2) (M=proton mass). This last expression is not correct because.

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . If 13.6 eV energy is required to ionise the hydrogen atom, then enegy required to remove an electron from n=2 is:

The ionization energy of H atom is 13.6 eV. what is the energy of Li2+ ion in first excited state.

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . What would happen, if the electron in an atom is stationary?

"_2H_e^2 and "_1H^3 nuclei have the same mass number. Do they have the same binding energy?

In a sample of H-atoms electrons are de-exicited from 4^(th) excited state to ground state. Which is/are correct statement ?

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . When hydrogen atom is the first excited level, it radius is:,

Bohr's model of hydrogen atom In order to explain the stability of atom and its line spectra, Bohr gave a set of postulates: An electron in an atom revolves in certain circular orbit around the nucleus. These are the orbits for which mvr=(nh)/(2pi) In these allowed orbits, the electron does not radiate energy. When an electron jumps from higher energy level E_(n_2) to lower energy orbit E_(n_1) , radiation is emittd and frequency of emitted electron is given by v=(E_(n_2)-E_(n_1))/h . Further the radius of the n^(th) orbit of hydrogen atom is r=(n^2h^24piepsilon_0)/(4pi^2me^2) and energy of the n^(th) orbit is given by E_n=-13.6/n^2 eV . The angular momentum of the orbital electron is integarl multiple of