Home
Class 12
MATHS
Show that ((x+b)(x+c))/((b-a)(c-a))+((x+...

Show that `((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1` is an identity.

Text Solution

Verified by Experts

Given relation is
`((x+)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1`….i
When `x=-a`, then LHS of eq. (i) `((b-a)(c-a))/((b-a)(c-a))=1`
`=` RHS of Eq. (i)
When `x=` then LHS of eq. (i)
`=((c-b)(a-b))/((c-b)(a-b))=1=` RHS of Eq. (i)
And when `x=-c` then LHS of eq. (i) `=((a-c)(b-c))/((a-c)(b-c))=1`
`=RHS` of eq. (i)
Thus, highest power of `x` occuring in relation of Eq. (i) is 2 and this relation is satisfied by three distinct values o `x(=-a,-b,-c)`.Therefore it cannot be an equation and hence it is an identity.
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= (ax^(2))/((x-a)(x-b) (x-c)) + (bx)/((x-b) (x-c))+ (c )/((x-c)) + 1 then prove that (y')/(y)= (1)/(x) [(a)/(a-x) + (b)/(b-x) + (c)/(c-x)]

(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))

If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degree < 3, then prove that (dg(x))/(dx)=|{:(1,a, f(a)(x-a)^(-2)),(1,b,f(b)(x-b)^(-2)), (1,c,f(c)(x-c)^(-2)):}|/|{:(a^2,a,1),(b^2,b,1),(c^2,c,1):}|

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

Prove that: |(-2a , a+b , a+c ) ( b+a ,-2b , b+c ) ( c+a, c+b , -2c)| =4(a+b)(b+c)(c+a)

Prove that {:[( b+c,a,a), ( b,c+a,b),( c,c,b+a) ]:}

Show that points A(a,b+c),B(b,c+a) and C(c,a+b) are collinear

If x, y in R and |{:((a ^(x) + a ^(-x) ) ^(2) , (a ^(x) - a ^(-x) ) ^(2), 1),((b ^(x) + b ^(-x)) ^(2),(b ^(x) - b ^(-x) ) ^(2) , 1), ( ( c ^(x) + c ^(-x)) ^(2) , (c ^(x) - c ^(-x)) ^(2) , 1):}|=2 y + 6 then y = ____________.

Prove that the minimum value of ((a+x)(b+x))/((c+x)), x gt - c is [sqrt(a-c)+sqrt(b-c)]^(2) .

Show that If a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0 is a perfect square, then the quantities a, b, c are in harmonic progression