Home
Class 12
MATHS
If (5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2...

If `(5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2)-3)=10`, then `x =`

Text Solution

Verified by Experts

`(5+2sqrt(6))(5-2sqrt(6))=1`
`:.(5-2sqrt(6))=1/((5+2sqrt(6)))`
`:.(5+2sqrt(6))^(x^(2)-3)+(5-2sqrt(6))^(x^(2)-3)=10`
reduces to `(5+2sqrt(6))^(x^(2)-3)+(1/(5+2sqrt(6))))^(x^(2)-3)=10`
Put `(5+2sqrt(6))^(x^(2)-3)=t`, then `t+1/t=10`
`impliest^(2)-10t+1=0`
or `t=(10+-sqrt((100-4)))/2=(5+-2sqrt(6))`
`implies(5+2sqrt(6))^(x^(2)-3)=(5+-2sqrt(6))=(5+2sqrt(6))^(+-1)`
`:.x^(2)-3=+-1`
`impliesx^(2)-3=1` or `x^(2)-3=-1`
`impliesx^(2)=4` or `x^(2)=2`
Hence `x=+-2, +-sqrt(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Number of solution (s) of the given equation is/ are -

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Sum of positive solutions is

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : If x in (-3,5) , then number of possible values of x, is-

(x+1) sqrt(2x^(2)+3)

Solve the equation (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=101/(10(2-sqrt(3))

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Let S= {x in R : x ge 0" and "2|sqrt(x)-3|+sqrt(x)(sqrt(x)-6)+6=0} . Then S : "…………"

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

Solve the equation sqrt((2x^(2)+5x-2))-sqrt(2x^(2)-5x-9)=1