Home
Class 12
MATHS
If alpha,beta are roots of x^2-px+q=0 th...

If `alpha,beta` are roots of `x^2-px+q=0` then find the quadratic equation whose roots are `((alpha^2-beta^2)(alpha^3-beta^3))` and `alpha^2beta^3+alpha^3beta^2`

Text Solution

Verified by Experts

Since `alpha, beta` are the roots of `x^(2)-px+q=0`
`:. alpha+beta=p,alphabeta=q`
`impliesalpha-beta=sqrt((p^(2)-4q))`
Now `(alpha^(2)-beta^(2))(alpha^(3)-beta^(3))`
`=((alpha+beta)(alpha-beta)(alpha-beta)(alpha^(2)+alpha beta+ beta^(2))`
`=(alpha+beta)(alpha-beta)^(2){(alpha+beta)^(2)-alpha beta}`
`=p(p^(2)-4q)(p^(2)-q)`
and `alpha^(3)beta^(2)+alpha^(2)beta^(3)=alpha^(2)beta^(2)(alpha+beta)=pq^(2)`
`S=` Sum of roots `=p(p^(2)-4q)(p^(2)-q)+pq^(2)`
`=p(p^(4)-5p^(2)q+5q^(2))`
`P=` Product of roots `=p^(2)q^(2)(p^(2)-4q)(p^(2)-q)`
`:.` Required equation is `x^(2)-Sx+P=0`
i.e. `x^(2)-p(p^(4)-5p^(2)q+5q^(2))x+p^(2)q^(2)(p^(2)-4q)(p^(2)-q)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2)-3x+1=0 , then the equation whose roots are (1/(alpha-2),1/(beta-2)) is

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

If alpha and beta are the roots of the equation 2x^2-3x + 4=0 , then the equation whose roots are alpha^2 and beta^2, is

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

If alpha, beta, gamma are the roots of the cubic equation x^(3)+qx+r=0 then the find equation whose roots are (alpha-beta)^(2),(beta-gamma)^(2),(gamma-alpha)^(2) .

If alpha, beta are the roots of the equationn x^(2)-3x+5=0 and gamma, delta are the roots of the equation x^(2)+5x-3=0 , then the equation whose roots are alpha gamma+beta delta and alpha delta+beta gamma is

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is

If alpha,beta be the roots of the equation 3x^2+2x+1=0, then find value of ((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3

If alpha,beta are the roots of the equation a x^2+b x+c=0, then find the roots of the equation a x^2-b x(x-1)+c(x-1)^2=0 in term of alpha and beta .

If alpha and beta are the roots of the equation x^2-4x + 1=0(alpha > beta) then find the value of f(alpha,beta)=(beta^3)/2csc^2(1/2tan^(- 1)(beta/alpha))+(alpha^3)/2sec^2(1/2tan^- 1(alpha/beta))