Home
Class 12
MATHS
Solve the equation |x-1|+|7-x|+2|x-2|=4...

Solve the equation `|x-1|+|7-x|+2|x-2|=4`

Text Solution

Verified by Experts

Here critical points are 1,2,7 using the method of intervals, we find intervals when the expression `x-1,7-x` and `x-2` are of constant signs.
i.e. `xlt1, 1ltx lt 2, 2 lt x lt 7,x gt7`

Thus, the given equation is equivalent to the collection of four systems,
`[({(xlt1),(-(x-1)+(7-x)-2(x-2)=4):}),({(1lexlt2),((x-1)+(7-x)-2(x-2)=4):}),({(2lexlt7),((x-1)+(7-x)+2(x-2)=4):}),({(xge7),((x-1)-(7-x)+2(x-2)=4):}):} `implies[({(xlt1),(x=2):}),({(1lexlt2),(x=3):}),({(2lexlt7),(x=1):}),({(xge7),(x=4):}):}`
From the collection of four systems, the given equation has no solution.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equatioin |x-|4-x||-2x=4

Solve the equation |x/(x-1)|+|x|=x^2/|x-1|

Solve the equation sqrt(x)=x-2

Solve the equation 2x^(2)+5x-12=0

Solve the equation 4{x}=x+[x]

Solve the equation 2^(|x+1|)-2^(x)=|2^(x)-1|+1

Solve the equation 2x^(2)+ 5x-12=0

Solve the equation 2x^(2)+ 5x-12=0

Solve the equation x/2+((3x-1))/6=1-x/2

Solve the equation tan^(-1) ((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4