Home
Class 12
MATHS
Number of real values of x satisfying th...

Number of real values of x satisfying the equation `log_(x^2-6x+8)(log_(2x^2-2x-8)(x^2+5x))=0` is equal to

Text Solution

Verified by Experts

This equatioin is equivalent of the system
`{(x^(2)-6x+8ge0),(x^(2)-6x+8!=1),(2x^(2)-2x-8gt0),(2x^(2)-2x-8!=1),(x^(2)+5x=2x^(2)-2x-8):}`
Solve the equations of this system
`implies{(xlt2 "and"xgt4),(x!=3+-sqrt(2)),(xlt(1-sqrt(17))/2"and"xgt(1+sqrt(17))/2),(x1=(1+-sqrt(19))/2),(x=-1,8):}`
`x=-1`, does not satisfy the third relatiion of this system.
Hence `x_(1)=8` is only rootof the original equation.
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 is:

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

The number of real solutions of the equation log_(0.5)x=|x| is

Solve the equation log(3x^(2)+x-2)=3log(3x-2) .

Solve the inequation log_(2x+3)x^(2)ltlog_(2x+3)(2x+3)

Solve the equatioin 2log2x=log(7x-2-2x^(2))

Solve the equation log_((log_(5)x))5=2

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the inequation log_(((x^2-12x+30)/10))(log_2((2x)/5))gt0