Home
Class 12
MATHS
Solve the inequation log(2x+3)x^(2)ltlog...

Solve the inequation `log_(2x+3)x^(2)ltlog_(2x+3)(2x+3)`

Text Solution

Verified by Experts

This inequation is equivalent to the collection of the systems
`[{(2x+3gt1),(x^(2)lt2x+3),(0lt2x+3lt1),(x^(2)gt2x+3):}implies[{(xgt-1),((x-3)(x+1)lt0):},{((-3/2ltxlt-1),((x-3)(x+1)gt0):}):}`
`implies[{(xgt-1),(-1ltxlt3):}, {(-3/2lt x lt-1),(xlt-1 "and" xgt3)implies-3/2ltxlt-1):}`
Hence the solution of the original inequation is
`x epsilon(-3/2,-1)uu(-1,3)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the inequation (x^(2)+x+1)^(x)lt1

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Solve the equation log(3x^(2)+x-2)=3log(3x-2) .

Solve the inequation 4^(x+1)-16^(x)lt2log_(4)8

Solve the equation log_(3)(5+4log_(3)(x-1))=2

Solve the inequation log_((x-3))(2(x^(2)-10x+24)gelog_((x-3))(x^(2)-9)

Solve the inequation log_(((x^2-12x+30)/10))(log_2((2x)/5))gt0

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the equation x^(log_(x)(x+3)^(2))=16 .

Solve the equation 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)