Home
Class 12
MATHS
The number of roots of the equation 1/x...

The number of roots of the equation `1/x+1/(sqrt((1-x^2)))=35/12` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

Let `a/x=u` and `1/(sqrt((1-x^(2))))=v` then
`u+v=35/12` and `u^(2)+v^(2)=u^(2)v^(2)`
`implies(u+v)^(2)=(35/12)^(2)`
`impliesu^(2)+v^(2)+2uv=(35/12)^(2)`
`impliesu^(2)v^(2)+2uv=(35/12)^(2)[ :' u^(2)+v^(2)=u^(2)v^(2)]`
`impliesu^(2)v^(2)-(35/12)^(2)=0`
`implies(uv+49/12)(uv-25/12)=0`
`impliesuv=-49/12, uv=25/12`
Case I `uv=-49/12,` then
`1/x.1/(sqrt((1-x^(2))))=-49/12` [ here `xlt0`]
`impliesx^(4)-x^(20+((12)^(2))/((49)^(2))=0`
`impliesx=-((5+sqrt(73)))/14
Case II If `uv=25/12` then
`1/x. 1/(sqrt((1-x^(2))))=25/12` [ here `xgt0`]
`impliesx^(4)-x^(2)+((12)^(2))/((25)^(2))=0`
`implies(x^(2)-9/25)(x^(2)-16/25)=0impliesx=3/5,4/5`
On combining both cases
`x=-((5+sqsrt(73)))/14,3/5, 4/5`
Hence number of roots `=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

For the equation 2x^(2)-6sqrt(2)x-1=0

The number of real solutions of the equation sqrt(1+cos2x)=sqrt2cos^(-1)(cosx) in [pi/2,pi] is _____

The roots of the equation x^(2)-2sqrt(3)x+3=0 are

The number of real solution of the equation x^(2)=1-|x-5| is

The number of real solutions of equation 2^(x/2)+(sqrt2+1)^x=(5+2sqrt2)^(x/2) is

Find the roots of the equation (1)/(x)-(1)/(x-2)=3, x ne 0,2

Find the roots of the equation x+(1)/(x)=3, x ne 0

If alpha be the smallest positive root of the equation sqrt(sin(1-x))=sqrt(cos x) , then the approximate integral value of alpha must be .