Home
Class 12
MATHS
Let a,b,c and d are real numbers in GP. ...

Let a,b,c and d are real numbers in GP. Suppose u,v,w satisfy the system of equations `u+2y+3w=6,4u+5y+6w=12` and `6u+9v=4`. Further consider the expressions
`f(x)=(1/u+1/v+1/w)x^(2)+[(b-c)^(2)+(c-a)^(2)+(x-b)^(2)]`
`x+u+v+w=0` and `g(x)=20x^(2)+10(a-d)^(2)x-9=0`
`(u+v+w)` is equal to

A

`a-d`

B

`(a-d)^(2)`

C

`a^(2)-d^(2)`

D

`(a+d)^(2)`

Text Solution

Verified by Experts

Let `b=ar,c=ar^(2)` and `d=ar^(3)`
Now `(b-c)^(2)+(c-a)^(2)+(d-b)^(2)`
`=(ar-ar^(2))^(2)+(ar^(2)-a)^(2)+(ar^(3)-ar)^(2)`
`=a^(2)r^(2)(1-r)^(2)+a^(2)(r^(2)-1)^(2)+a^(2)r^(2)(r^(2)-1)^(2)`
`=a^(2)(1-r)^(2){r^(2)+(r+1)^(2)+r^(2)(r+1)^(2)}`
`=a^(2)(1-r)^(2)(r^(4)+2r^(3)+3r^(2)+2r+1)`
`=a^(2)(1-r)^(2)(1+r+r^(2))^(2)=a^(2)(1-r^(3))^(2)`
`=(a-ar^(3))^(2)=(a-d)^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In the figure, a vectors x satisfies the equation x-w=v. then, x is equal to

Discuss the continuity for f(x) = (1 - u^(2))/(2 + u^(2)) , where u = tan x.

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If x = 2, y = 3, u = - 2 and v = - 3, in which quadrant does the point (x + y, u + v) lie ?

The number of real solutions of the equation (9//10)^x=-3+x-x^2 is a. 2 b. 0 c. 1 d. none of these

The function u=e^x sinx ; v=e^x cos x satisfy the equation v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

Find the points of discontinuity of y = (1)/(u^(2) + u -2) , where u = (1)/(x -1)

Find differentiation of y w.r.t x. (i) y=x^(2)-6x (ii) y=x^(5)+2e^(x) (iii) y=4 ln x +cos x

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is