Home
Class 12
MATHS
Let a,b,c and d are real numbers in GP. ...

Let a,b,c and d are real numbers in GP. Suppose u,v,w satisfy the system of equations `u+2y+3w=6,4u+5y+6w=12` and `6u+9v=4`. Further consider the expressions
`f(x)=(1/u+1/v+1/w)x^(2)+[(b-c)^(2)+(c-a)^(2)+(x-b)^(2)]`
`x+u+v+w=0` and `g(x)=20x^(2)+10(a-d)^(2)x-9=0`
`(u+v+w)` is equal to

A

`alpha, beta`

B

`-alpha,-beta`

C

`1/(alpha), 1/(beta)`

D

`-1/(alpha),-1/(beta)`

Text Solution

Verified by Experts

Now `f(x)=(1/u+1/v+1/2)x^(2)x[(b-c)^(2)`
`+(c-a)^(2)+(d-b)^(2)]x+u+v+w=0`
`impliesf(x)=-9/10x^(2)+(a-d)^(2)x+2=0`
`impliesf(x)=-9x^(2)+10(a-d)^(2)x+2=0`
`impliesf(x)=-9x^(2)+10(a-d)^(2)x+20=0`…v
Given roots of `f(x)=0` are `alpha` and `beta`
Now replacing `x` by `1/x` in Eq v then
`(-9)/(x^(2))+(10(a-d)^(2))/x+20=0`
`implies20x^(2)+10(a-d)^(2)x-9=0`
`g(x)=0`
`:.` Roots of `g(x)=0` are `1/(alpha),1/(beta)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In the figure, a vectors x satisfies the equation x-w=v. then, x is equal to

Discuss the continuity for f(x) = (1 - u^(2))/(2 + u^(2)) , where u = tan x.

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If x = 2, y = 3, u = - 2 and v = - 3, in which quadrant does the point (x + y, u + v) lie ?

The number of real solutions of the equation (9//10)^x=-3+x-x^2 is a. 2 b. 0 c. 1 d. none of these

The function u=e^x sinx ; v=e^x cos x satisfy the equation v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

Find the points of discontinuity of y = (1)/(u^(2) + u -2) , where u = (1)/(x -1)

Find differentiation of y w.r.t x. (i) y=x^(2)-6x (ii) y=x^(5)+2e^(x) (iii) y=4 ln x +cos x

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is