Home
Class 12
MATHS
If alpha and beta are the roots of x^2 -...

If `alpha` and `beta` are the roots of `x^2 - p (x+1) - c = 0`, then the value of `(alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)`

Text Solution

Verified by Experts

Since `alpha` and `beta` are the roots of the equation
`x^(2)-px-p-c=0`
`:.alpha+beta=p`
and `alpha beta=-p-c`
Now `(alpha+1)(beta+1)=alpha beta+alpha +beta+1`
`=-p-c+p+q=1-c`
Hence `(alpha+1)(beta+1)=1-c`……….i
Second part LHS`=(alpha^(2)+2alpha+1)/(alpha^(2)+2alpha+c)+(beta^(2)+2beta+1)/(beta^(2)+2beta+c)`
`=((alpha+1)^(2))/((alpha+1)^(2)-(1-c))+((beta+1)^(2))/((beta+1)^(2)-(1-c))`
`=(alpha+1)^(2))/((alpha+1)^(2)-(alpha+1)(beta+1))`
`+((beta+1)^(2))/((beta+1)^(2)-(alpha+1)(beta+1))` [from eq i ]
`=(alpha+1)/(alpha-beta)+(beta+1)/(beta-alpha)=(alpha-beta)/(alpha-beta)=-1=RHS`
Hence RHS=LHS`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim_(xto alpha)(1+ax^(2)+bx+c)^(2//x-alpha) is

If alpha and beta are the roots of the equation 2x^2-3x + 4=0 , then the equation whose roots are alpha^2 and beta^2, is

If alpha" and "beta are the zeroes of the polynomial p(x)= 3x^(2)-14x+15 , find the value of alpha^(2)+beta^(2) .

If alpha, beta are the roots of x^(2)-3x+1=0 , then the equation whose roots are (1/(alpha-2),1/(beta-2)) is

If alpha" and "beta are the zeroes of the polynomial p(x)= 9x^(2)+9x+2 , find the value of alpha^(2)+beta^(2) .

If alpha and beta are the roots of the equation ax^2 + bx +c =0 (a != 0; a, b,c being different), then (1+ alpha + alpha^2) (1+ beta+ beta^2) =

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)//(1-alpha)+(1+beta)//(1-beta)+(1+gamma)//(1-gamma) is equal to

If alpha,beta be the roots of the equation 3x^2+2x+1=0, then find value of ((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)