Home
Class 12
MATHS
If alpha,beta are the roots of x^2+p x+q...

If `alpha,beta` are the roots of `x^2+p x+q=0a n dgamma,delta` are the roots of `x^2+r x+s=0,` evaluate `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)` in lterms of `p ,q ,r ,a n dsdot` Deduce the condition that the equation has a common root.

Text Solution

Verified by Experts

`:'alpha, beta` are the roots of the equation
`x^(2)+px+q=0`
`:.alpha+beta=-p,alpha beta=q`……….i
and `gamma, delta` are the roots of the equation `x^(w2)+rx+s=0`
`:.gamma+delta=-r,gamma delta=s`…ii
Now `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)`
`=[(alpha^(2)-alpha(gamma+delta)+gamma delta][beta^(2)-beta(gamma+delta)+gamma delta]`
`=(alpha^(2)+r alpha +s)(beta^(2)+rbeta+s)` [from Eq (ii) ]
`impliesalpha^(2)+r alpha beta(alpha +beta)+r^(2) alpha beta+s(alpha^(2)+beta^(2))`
`+sr(alpha+beta)+s^(2)`
`=alpha^(2) beta^(2)+r alpha beta(alpha +beta)+r^(2) alpha beta+s[(alpha +beta)^(2)-2alpha beta]`
`+sr(alpha +beta)+s^(2)`
`=q^(2)-pqr+r^(2)q+s(p^(2)-2q)+sr(-p)+s^(2)`
`=(q-s)^(2)-rpq+r^(2)q+sp^(2)-prs`
`=(q-s)^(2)-rq(p-r)+sp(p-r)`
`=(q-s)^(2)+(p-r)(sp-rq)`............iii
For a common root (let `alpha=gamma` or `beta=delta`)
then `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)=0` .........iv
From eqs (iii) and iv) we get
`(q-s)^(2)+(p-r)(sp-rq)=0` ltbr. `=(q-s)^(2)=(p-r)(rq-sp)` which is the required condition.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma be the roots of (x-a) (x-b) (x-c) = d, d != 0 , then the roots of the equation (x-alpha)(x-beta)(x-gamma) + d =0 are :

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha,beta are roots of x^2-px+q=0 then find the quadratic equation whose roots are ((alpha^2-beta^2)(alpha^3-beta^3)) and alpha^2beta^3+alpha^3beta^2

If alpha, beta, gamma are the roots fo x^(3)-x^(2)+ax+b=0 and beta, gamma, delta are the roots of x^(3)-4x^(2)+mx+n=0 . If alpha, beta, gamma and delta are in AP with common difference d then

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in AP, then common difference of AP is

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in GP, then common ratio of GP is

If alpha, beta are the roots of x^(2)-3x+1=0 , then the equation whose roots are (1/(alpha-2),1/(beta-2)) is

Let alpha and beta be the roots of x^2-x+p=0 and gamma and delta be the root of x^2-4x+q=0. If alpha,beta,a n dgamma,delta are in G.P., then the integral values of p and q , respectively, are

If alpha, beta are the roots of the equationn x^(2)-3x+5=0 and gamma, delta are the roots of the equation x^(2)+5x-3=0 , then the equation whose roots are alpha gamma+beta delta and alpha delta+beta gamma is