Home
Class 12
MATHS
Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sq...

Solve `sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1`

Text Solution

Verified by Experts

Let `sqrt((x-1))=t`
We have `x=t^(2)+1,tge0`
The given equation reduce in the form
`sqrt((t^(2)+4-4t))+sqrt((t^(2)+9-6t))=1`
`implies|t-2|+|t-3|=1`

`:.2letle3`
`implies4let^(2)le9`
`implies4lex-1le9`
`implies5lexle10`
`:.` Solution of the original equation is `x epsilon[5,10]`
Promotional Banner

Similar Questions

Explore conceptually related problems

y=sqrt(x+sqrt(x+sqrt(x)))

Prove that the following equations has no solutions. (i) sqrt((2x+7))+sqrt((x+4))=0 (ii) sqrt((x-4))=-5 (iii) sqrt((6-x))-sqrt((x-8))=2 (iv) sqrt(-2-x)=root(5)((x-7)) (v) sqrt(x)+sqrt((x+16))=3 (vi) 7sqrt(x)+8sqrt(-x)+15/(x^(3))=98 (vii) sqrt((x-3))-sqrt(x+9)=sqrt((x-1))

Find number of solutions of the equation sqrt((x+8)+2sqrt(x+7))+sqrt((x+1)-sqrt(x+7))=4

The equation sqrt(x+1)-sqrt(x-1)=sqrt(4x-1) has

Solve: (log)_3(sqrt(x)+|sqrt(x)-1|)=(log)_9(4sqrt(x)-3+4|sqrt(x)-1|)

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

Solve sqrt(5)x^(2) + x + sqrt(5)=0

If y=(sqrt(x)+1/sqrt(x)).(sqrt(x)-1/sqrt(x)) then dy/dx = ….. .