Home
Class 12
MATHS
If a1, a2, a3 ......an (n>= 2) are read...

If `a_1, a_2, a_3 ......a_n (n>= 2) ` are read and `(n-1) a_1^2 -2na_2 < 0` then prove that at least two roots of the equation ` x^n+a_1 x^(n-1) +a_2 x^(n-2) +......+a_n = 0 `are imaginary.

Text Solution

Verified by Experts

Let `alpha_(1),alpha_(2),alpha_(3),..,alpha_(n)` are the roots of the given equation.
Then `sumalpha-(1)=alpha_(1)+alpha_(2)+alpha_(3)+………+alpha_(n)=-a_(1)`
and `sumalpha_(1)alpha_(2)=alpha_(1)alpha_(2)+alpha_(1)alpha_(3)+……..+alpha_(n-1)alpha_(n)=a_(2)`
Now `(n-1)a-(1)^(2)-2na_(2)=(n-1)(sumalpha_(1))^(2)-2nsumalpha_(1)alpha_(2)`
`=n{(sumalpha_(1))^(2)-2sumalpha_(1)alpha_(2)}-(sumalpha_(1))^(2)`
`=nsumalpha_(1)^(2)-(suma_(1))^(2)`
`=sum_(1leiltjlen)sum(alpha_(i)-alpha_(j))^(2)`
But given that `(n-1)a_(1)^(2)-2na_(2)lt0`
`impliessum_(1leiltjlen).sum(alpha_(i)-alpha_(j))^(2)lt0`
which is true only when atleast two roots are imaginary.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

If a_1,a_2,a_3,.....,a_(n+1) be (n+1) different prime numbers, then the number of different factors (other than1) of a_1^m.a_2.a_3...a_(n+1) , is

If a_1, a_2 a_n ,\ a_(n+1) are in GP and a_1>0AAI ,\ t h e n |loga_nloga_(n+2)loga_(n+4)loga_(n+6)loga_(n+8)loga_(n+10)loga_(n+12)loga_(n+14)loga_(n+16)| is equal to- 0 b. nloga_n c. n(n+1)loga_n d. none of these

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant Delta=|[loga_n,loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]| is equal to-

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

Use the principle of mathematical induction : A sequence a_1, a_2, a_3,…… is defined by letting a_1 = 3 and a_k = 7a_(k-1) , for all natural numbers k > 2 . Show that a_n = 3.7^(n-1) , for all natural numbers .

If a_1, a_2, a_3, be terms of an A.P. if (a_1+a_2+...+a_p)/(a_1+a_2+...+a_q)=(p^2)/(q^2), p!=q ,t h e n(a_6)/(a_(21)) equals

Consider two geometric progressions a_1,a_2,a_3,......a_0 & b_1, b_2, b_3,....b_n with a_r=1/b_r=2^(r-1) and an- other sequence t_1,t_2,t_3,......t_n . such that t_r = cot^-1 (2a_r + b_r)then lim_(n->oo)sum_(r=1)^nt_r is -