Home
Class 12
MATHS
If 0 lt x lt 1000 and [x/2]+[x/3]+[x/5...

If `0 lt x lt 1000 and [x/2]+[x/3]+[x/5]=31/30x`, (where `[.]` denotes the greatest integer function then number of possible values of x.

A

32

B

33

C

34

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

If [.] denotes the greatest integer function, then lim_(xto0) [(x^2)/(tanx sin x)] , is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

lim _(x rarr 1) (xsin(x−[x])) /(x-1) ​ , where [.] denotes the greatest integer function, is equal to

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.