Home
Class 12
MATHS
Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7...

Solve `sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(5)x^(2) + x + sqrt(5)=0

Solve the equation sqrt((2x^(2)+5x-2))-sqrt(2x^(2)-5x-9)=1

The value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

Find the roots of the following qudratic equations by factorisation: (1) 3x^(2)-13x-30=0 (2) x^(2)-(3)/(2)x+(9)/(16)=0 (3) x^(2)-4sqrt(3x)-15=0 (3) sqrt(3x^(2))-7x-6sqrt(3)=0

Differentiate sqrt((x-3) (x^(2) + 4))/sqrt((3x^(2) + 4x + 5)) w.r.t x.

Solve the equation 3sqrt((x+3))-sqrt((x-2))=7

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

Solve the equation (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=101/(10(2-sqrt(3))

If (5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2)-3)=10 , then x =

int sqrt(x^(2)-8x+7)dx=....