Home
Class 12
MATHS
For any value of x the expression 2(k-x)...

For any value of x the expression `2(k-x)(x+sqrt(x^2+k^2))` cannot exceed

A

`k^(2)`

B

`2k^(2)`

C

`3k^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `y=2(kpx)(x+sqrt((x^(2)+k^(2)))`
`impliesy-2(k-x)x=2(k-x)sqrt((x^(2)+k^(2)))`
On squaring both sides we get
`impliesy^(2)+4(-x)^(2)x^(2)-4xy(k-x)=4(k-x)^(2)(x^(2)+k^(2))`
`impliesy^(2)-4xy(k-x)=4(k-x)^(2)k^(2)`
`implies4(k^(2)-y)x^(2)-4(2k^(3)-ky)x-y^(2)+4k^(4)=0`
Since `x` is real
`:.Dge0`
`implies16(2k^(3)-ky)^(2)-4.4(k^(2)-y)(4k^(4)-ky^(2))ge0`
[using `b^(2)-4acge0`]

`implies4k^(6)+k^(2)y^(2)-4k^(4)y-(-k^(2)y^(2)+4k^(6)+y^(3)-4yk^(4))ge0`
`implies2k^(2)y^(2)-y^(3)ge0`
`impliesy^(2)(y-2k^(2))le0`
`:.yle2k^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x .

If G and L are the greatest and least values of the expression (2x^(2)-3x+2)/(2x^(2)+3x+2), x epsilonR respectively. The least value of G^(100)+L^(100) is

If x is real, the maximum and minimum values of expression (x^(2)+14x+9)/(x^(2)+2x+3) will be

For what value of k, the pair of linear equations kx+2y=k-2 and 8x+ky=k has no solution?

Find the value of x in sqrt(x+2sqrt(x+2sqrt(x+2sqrt(3x))))=x.

For what value of k, 7 is a zero of the polynomial p(x)= x^(2)- (5k-18)x-35 ? Also find the other zero.

If x is real, the expression (x+2)/(2x^2 + 3x+6) takes all value in the interval

For x in (-pi, pi) find the value of x for which the given equation (sqrt 3 sin x + cos x)^(sqrt(sqrt3 sin 2 x-cos 2 x+2))=4 is satisfied.

Find the values of k for which the line (k-3) x-(4-k^2) y+k^2 -7k+6=0 is (i) Parallel to the x-axis Line (k-3) x-(4-k^(2) ) y+k^(2) -7k+6=0 .

The number of integral values of K' the inequality |(x^2+kx+1)/(x^2+x+1)|<3 is satisfied for all real values of x is....