Home
Class 12
MATHS
The value of x which satisfy the equati...

The value of x which satisfy the equation `(sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1))` is

A

3

B

2

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

We have `sqrt((5x^(2)-8x+3))-sqrt((5x^(2)-9x+4))`
`=sqrt((2x^(2)-2x))-sqrt((2x^(2)-3x+1))`
`impliessqrt((5x-3)(x-1))-sqrt((5x-4)(x-1))`
`=sqrt(2x(x-1))-sqrt((2x-1)(x-1))`
`impliessqrt(x-1)(sqrt(5x-3)-sqrt(5x-4))=sqrt(x-1)(sqrt(2x)-sqrt(2x-1))`
`impliessqrt(x-1)=0`
`impliesx=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation 3sqrt((x+3))-sqrt((x-2))=7

Solve the equation sqrt((2x^(2)+5x-2))-sqrt(2x^(2)-5x-9)=1

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

(x+1) sqrt(2x^(2)+3)

The sum of values of x satisfying the equation (31+8sqrt(15))^((x^2)-3)+1=(32+8sqrt(15))^((x^2)-3) is

For the equation 2x^(2)-6sqrt(2)x-1=0

The number of real solutions of sqrt(x^2-4x+3)+sqrt(x^2-9)=sqrt(4x^2-14x+6)

Solve the equation (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=101/(10(2-sqrt(3))

Find number of solutions of the equation sqrt((x+8)+2sqrt(x+7))+sqrt((x+1)-sqrt(x+7))=4

int(dx)/(sqrt(5x^(2)-2x))