Home
Class 12
MATHS
Let f(x)=x^(2)+bx+c and g(x)=x^(2)+b(1)x...

Let `f(x)=x^(2)+bx+c` and `g(x)=x^(2)+b_(1)x+c_(1)`
Let the real roots of `f(x)=0` be `alpha, beta` and real roots of `g(x)=0` be `alpha +k, beta+k` fro same constant `k`. The least value fo `f(x)` is `-1/4` and least value of `g(x)` occurs at `x=7/2`
The roots of `f(x)=0` are

A

`-1`

B

`-1/2`

C

`-1/3`

D

`-1/4`

Text Solution

Verified by Experts

The correct Answer is:
D

We have `(alpha-beta)=(alpha+k)-(beta+k)`
`implies(sqrt(b^(2)-4c))/1=(sqrt(b_(1)^(2)-4c_(1)))/1`
`impliesb^(2)-4c=b_(1)^(3)-4c_(1)`…i
Given least value of `f(x)=-1/4-((b^(2)-4c))/(4xx1)=-1/4`
`impliesb^(2)-4c=1`
`:.b^(2)-4c=1=b_(1)^(2)-4c_(1)` [from Eq. (i) ]..ii
Also given least value of `g(x)` occurs at `x=7/2`
`:.-(b_(1))/(2xx1)=7/2`
`:.b_(1)=-7`
Least value of `g(x)=-(b_(1)^(2)-4c_(1))/(4xx1)=-1/4` [from Eq. (ii)]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = x2 + b_1x + c_1. g(x) = x^2 + b_2x + c_2 . Real roots of f(x) = 0 be alpha, beta and real roots of g(x) = 0 be alpha+gamma, beta+gamma . Least values of f(x) be - 1/4 Least value of g(x) occurs at x=7/2

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

f(x)= 3x^(2)-1 and g(x)= 3 + x . If f= g then the value of x is…….

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

If alpha, beta be the roots of 4x^(2) - 16x + c = 0, c in R such that 1 lt alpha lt 2 and 2 lt beta lt 3 , then the number of integral values of c is

Let alpha,beta be the roots of the equation x^2-p x+r=0 and alpha/2,2beta be the roots of the equation x^2-q x+r=0 , the value of r is

Let alpha and beta be the roots of x^2-x+p=0 and gamma and delta be the root of x^2-4x+q=0. If alpha,beta,a n dgamma,delta are in G.P., then the integral values of p and q , respectively, are