Home
Class 12
MATHS
Let r,s and t be the roots of the equati...

Let `r,s` and `t` be the roots of the equation `8x^(3)+1001x+2008=0` and if `99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3)`, the value of `[lamda]` is (where [.] denotes the greatest integer function)

Text Solution

Verified by Experts

The correct Answer is:
7

We have `4+s+t=0` ……………i
`rs+st+tr=1001/8`………ii
and `rst=-2008/8=-251` ……..iii
Now `(r+s)^(3)+(s+t)^(3)+(t+r)^(3)=(-t)^(3)+(-r)^(3)+(-s)^(3)`
`[:' r+s=t=0]`
`=(t^(3)+r^(3)+s^(3))=-3rst[ :' r+s+t=0]`
`=-(-251)=753`
Now `99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3)=753`
`:.lamda=753/99=7.6`
`:.[lamda]=7`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let r ,s and t be the roots of equation 8x^3+1001 x+2008=0. Then find the value of (r + s)^3 + (s + t)^3 + (t + r)^3 is .

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Find the values of x graphically satisfying [x]-1+x^(2)le0 where [.] denotes the greatest integer function.

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

The sum of the roots of the equation cos^(-1)(cosx)=[x]. where [x] denotes greatest integer function, is

Find the value of t which satisfies (t-[|sin x|])! =3!5!7! w h e r e[dot] denotes he greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If product of the real roots of the equation, x^(2)-ax+30=2sqrt((x^(2)-ax+45)),agt0 is lamda minimum value of sum of roots of the equation is mu . The value of (mu) (where (.) denotes the least integer function) is

Let alpha,beta be the roots of the equation x^2-p x+r=0 and alpha/2,2beta be the roots of the equation x^2-q x+r=0 , the value of r is