Home
Class 12
MATHS
If alpha, beta be the roots of the equat...

If `alpha, beta` be the roots of the equation `ax^2 + bx + c= 0` and `gamma, delta` those of equation `lx^2 + mx + n = 0`,then find the equation whose roots are `alphagamma+betadelta` and `alphadelta+betagamma`

Text Solution

Verified by Experts

The correct Answer is:
`a^(2)l^(2)x^(2)-ablmx+(b^(2)-2ac) Ink +(m^(2)-2In)ac=0`

We have `alpha + beta=-b/a`
`alpha beta=c/aimpliesgamma + delta =-m/l` and `gamma delta=n/l`
Now sum of the roots
`=(alpha gamma+beta delta)+(alpha delta +beta gamma)=(alpha +beta)gamma +(alpha +beta) delta`
`=(alpha +beta)(gamma+delta)`
`=(-b/a)(-m/l)=(mbl)/(al)`
and product of the roots
`=(alpha gamma+beta delta)(alpha delta+beta gamma)`
`=(alpha^(2)+beta^(2))gamma delta +alpha beta (gamma^(2)+delta^(2))`
`{(alpha +beta)-2alpha beta} gamma beta+alpa beta {(gamma +delta)^(2)-2 gama delta}`
`={(-b/a)^(2)-(2c)/a}b/l+c/a{(m/l)^(2)-(2n)/l}`
`={(b^(2)-2ac)/(a^(2))}b/l+c/a{(m^(2)-2nl)/(l^(2))}=((b^(2)-2ac)ln+(m^(2)-2nl)ac)/(a^(2)l^(2))`
`:.` Required equation is
`x^(2)-((mb)/(al))x+((b^(2)-2ac)ln+(m^(2)-2nl)ac)/(a^(2)+l^(2))=0`
`impliesa^(2)l^(2)x^(2)-mbalc+(b^(2)-2ac)ln+(m^(2)-2nl)ac=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equationn x^(2)-3x+5=0 and gamma, delta are the roots of the equation x^(2)+5x-3=0 , then the equation whose roots are alpha gamma+beta delta and alpha delta+beta gamma is

Let alpha,beta be the roots of the equation x^2-p x+r=0 and alpha/2,2beta be the roots of the equation x^2-q x+r=0 , the value of r is

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

If alpha and beta are the roots of the equation 2x^2-3x + 4=0 , then the equation whose roots are alpha^2 and beta^2, is

If alpha and beta (alpha lt beta) are the roots of the equation x^(2) + bx + c = 0 , where c lt 0 lt b , then

The point of intersection of lines is (alpha, beta) , then the equation whose roots are alpha, beta , is

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to

Find the roots of the quadratic equation 6x^(2)-x-2=0 .

If alpha, beta are the roots of the equation x^(2)-2x-a^(2)+1=0 and gamma, delta are the roots of the equation x^(2)-2(a+1)x+a(a-1)=0 such that alpha, beta epsilonn (gamma, delta) find the value of a .