Home
Class 12
MATHS
Find all values of a for which the inequ...

Find all values of a for which the inequation `4^(x^(2))+2(a+1)2^(x^(2))+4a^(2)-3gt0` is satisfied for any `x`.

Text Solution

Verified by Experts

The correct Answer is:
`a epsilon (-oo,-1)uu((sqrt(3))/2,oo)`

We have `4^(x^(2))+2(2a+1)2^(x^(2))+4a^(2)-3gt0`….i
Putting `t=2^(x^(2))` in the Eq. (i) we get
`t^(2)+2(2a+1)t+4a^(2)-3gt0`
Let `f(t)=t^(2)+2(2a+1)t+4a^(2)-3[ :' tgt0, :.2^(x^(2))gt0]`
`:' f(t)gt0`

Case Sum of the roots `gt0`
`-2((2a+1))/1gt0`
`:. a epsilon (-oo,-1/2)`
Case II Product of the roots `gt0`
`implies(4a^(2)-3)/1gt0`
or `a^(2)gt3/4`
or `a epsilon (-oo,-(sqrt(3))/2)uu((sqrt(3))/2,oo)`
Case III `Dlt0`
`implies4(2a+1)^(2)-4.1.(4a^(2)-3)lt0`
`implies 4a+4lt0`
`:.alt-1`
or `a epsilon (-oo,-1)`
Combining all cases we get
`a epsilon (-oo,-1)uu((sqrt(3))/2,oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all values of the parameter a for which the inequality a.9^x +4(a-1)3^x+a gt 1 is satisfied for all real values of x

Solve the inequation 3^(x+2)gt(1/9)^(1//x) .

Find all the values of the parameter 'a' for which the inequality 4^x-a2^x-a+3 <= 0 is satisfied by at least one real x.

The set of values of a for which the inequality, x^2 + ax + a^2 + 6a < 0 is satisfied for all x belongs (1, 2) lies in the interval:

Determine all value of 'a' for which the equation cos^(4) x-(a+2) cos^(2)x-(a+3)=0 , possess solution. Find the solutions.

Solution set of inequation (cos^(-1)x)^(2)-(sin^(-1)x)^(2)gt0 is

Find the value of x graphically which satisfy |(x^(2))/(x-1)|le1.

Solve the inequation sqrt((-x^(2)+4x-3))gt6-2x

For x in (-pi, pi) find the value of x for which the given equation (sqrt 3 sin x + cos x)^(sqrt(sqrt3 sin 2 x-cos 2 x+2))=4 is satisfied.

Find all roots of the equation x^(6)-x^(5)+x^(4)-x^(2)+x-1=0.