Home
Class 12
MATHS
Solve the system |x^(2)-2x|+y=1,x^(2)+|y...

Solve the system `|x^(2)-2x|+y=1,x^(2)+|y|=1`

Text Solution

Verified by Experts

The correct Answer is:
The pairs `(0,1),(1,0),((1-sqrt(5))/2,(1-sqrt(5))/2)` are solutions of the original system of equations.

Let `yge0`, then `|y|=y`
and then given system reduces to
`|x^(2)-2x|+y=1`….i
ad `x^(2)+y=1`………ii
From Eqs (i) and (ii) we get
`x^(2)-|x^(2)-2x|`
`impliesx^(2)=|x||x-2|`
Now `x lt 0, 0lexlt2,xge2`
`x^(2)-x(x-2),x^(2)=-x(x-2)`
`x^(2)=x(x-2)`
`:.x=0`
`impliesx(x+x-2)=0`
`:.x=0`
fail `:.x=0,1` fail
`impliesx=0,1` then `y=1,0`
`:.` Solutions are (0,1) and (1,0).
If `ylt0` then `|y|=-y` and then given system reduces to
`|x^(2)-2x|+y=1` ......iii
or `x^(2)-y=1`....iv
From Eqs (iii) and (iv) we get
`|x^(2)-2x|+x^(2)=2`
`implies|x||x-2|+x^(2)=2`
Now `xlt0, 0lexlt2, xge2`
`x(x-2)+x^(2)=2`
`-x(x-2)+x^(2)=2`
`x(x-2)+x^(2)=2`
`implies2x^(2)-2x-2=0implies2x=2`
`impliesx^(2)-x-1=0`
`impliesx^(2)-x-1=0`
`:.x=1`
`:.x=(1+-sqrt(5))/2`
`:.x=(1+1sqrt(5))/2` fail
`impliesx+(1-sqrt(5))/2 [ :' x lt0]`
`impliesx=(1-sqrt(5))/2,1` then `y=(1-sqrt(5))/2,0`
`:.` Solutions are `((1-sqrt(5))/2,(1-sqrt(5))/2)` and (1,0)
Hence all pairs `(0,1),(1,0)` and `((1-sqrt(5))/2,(1-sqrt(5))/2)` are solutions of the original system of equations.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the system of equations {(|x-1|+|y-2|=1),(y=2-|x-1|):}

Solve the system of equations {:(2x+5y=1),(3x+2y=7):},

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

Solve the inequation -|y|+x-sqrt((x^(2)+y^(2)-1))ge1

If A=[{:(1,2,0),(-2,-1,-2),(0,-1,1):}] find A^(-1) . Using A^(-1) , solve the system of linear equations x-2y=10, 2x-y-z=8, -2y+z=7 .

If x=sint,y=sinKt then show that (1-x^(2))y_2-xy_(1)+K^(2)y=0 .

If A=[{:(2,-3,5),(3,2,-4),(1,1,-2):}] find A^(-1) . Using A^(-1) solve the system of equations 2x-3y+5z=11 3x+2y-4z=-5 x+y-2z=-3

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

The point (1,2) lies inside the circle x^(2) + y^(2) - 2x + 6y + 1 = 0 .