Home
Class 12
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the cubic `x^(3)-px^(2)+qx-r=0`
Find the equations whose roots are
(i) `beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma)`
(ii)`(beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma)`
Also find the valueof `(beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)`

Text Solution

Verified by Experts

The correct Answer is:
(i) `ry^(3)-q(r+1)y^(2)+p(r+1)^(2)y-(r+1)^(3)=0`
(ii) `y^(3)-py^(2)+(4q-p^(2))y+(8r-4pq+p^(3))=0` and `4pq-p^(3)-8r`

Given `alpha, beta` and `gamma` are the roots of the cubic equation
`x^(3)-px^(2)+qx-r=0` ………..i
`:. alpha +beta+gamma=p,alpha beta+beta gamma+gamma alpha=q,alpha beta gamma =r`
(i) Let `y=beta gamma +1/(alpha)`
`impliesy=(alpha beta gamma +1)/(alpha)=(r+1)/(alpha)`
`:.alpha=(r+1)/y`
From Eq. (i) we get
`alpha^(3)-palpha^(2)+q alpha-r=0`
`implies((r+1)^(3))/(y^(3))-(p(r+1)^(2))/(y^(2))+(q(r+1))/y-r=0`
or `ry^(3)-q(r+1)y^(2)+p(r+1)^(2)y-(r+1)^(3)=0`
(ii) Let `y=beta+gamma -alpha=(alpha+beta+gamma)-2alpha=p-2alpha`
`alpha=(p-y)/2`
From Eq. (i) we get
`alpha^(3)-palpha^(2)+q alpha-r=0`
`implies((p-y)^(3))/8-(p(p-y)^(2))/4+(q(p-y))/2-r=0`
or `y^(3)-py^(2)+(4q-p^(2))y+(8r-4pq+p^(3))=0`
Also product of roots `=(8r-4pq+p^(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the cubic equation x^(3)+qx+r=0 then the find equation whose roots are (alpha-beta)^(2),(beta-gamma)^(2),(gamma-alpha)^(2) .

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

If alpha, beta, gamma are the roots of the equatiion x^(3)-px^(2)+qx-r=0 find (i) sumalppha^(2) (ii) sumalpha^(2) beta (iii) sum alpha^(3)

If alpha, beta are the roots of x^(2)-3x+1=0 , then the equation whose roots are (1/(alpha-2),1/(beta-2)) is

If alpha, beta gamma are the real roots of the equation x^(3)-3px^(2)+3qx-1=0 , then find the centroid of the triangle whose vertices are (alpha, (1)/(alpha)), (beta, (1)/(beta)) and (gamma, (1)/(gamma)) .

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha+beta=pi/2 and beta+ gamma = alpha , then find the value of tan alpha .

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to

If alpha, beta are the roots of the equationn x^(2)-3x+5=0 and gamma, delta are the roots of the equation x^(2)+5x-3=0 , then the equation whose roots are alpha gamma+beta delta and alpha delta+beta gamma is

If alpha,beta are roots of x^2-px+q=0 then find the quadratic equation whose roots are ((alpha^2-beta^2)(alpha^3-beta^3)) and alpha^2beta^3+alpha^3beta^2