Home
Class 12
MATHS
In the quadratic equation ax^2 + bx + c ...

In the quadratic equation `ax^2 + bx + c = 0`. if `delta = b^2-4ac` and `alpha+beta , alpha^2+beta^2 , alpha^3+beta^3` and `alpha,beta` are the roots of `ax^2 + bx + c =0`

A

`Delta!=0`

B

`bDelta=0`

C

`cb!=0`

D

`cDelta=0`

Text Solution

Verified by Experts

The correct Answer is:
D

`(alpha^(2)+beta^(2))=(alpha+beta)(alpha^(3)+beta^(3))`
`implies{(alpha+beta)^(2)-2alpha beta}^(2)=(alpha+beta){(alpha+beta)^(2)-2alpha beta(alpha +beta)}`
`=((b^(2))/(a^(2))-(2c)/a)^(2)=(-b/a)((-b^(3))/(a^(3))+(3bc)/(a^(2)))`
`implies((b^(2)-2ac)/(a^(2)))^(2)=((-b)/a)((-b^(3)+3abc)/(a^(3)))`
`implies4a^(2)c^(2)=acb^(2)`
`impliesac(b^(2)-4ac)=0`
As `a!=0`
`impliesc Delta=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

State the roots of quadratic equation ax^(2)+bx+c=0" if "b^(2)-4ac gt0

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals

In quadratic equation ax^(2)+bx+c=0 , if discriminant D=b^(2)-4ac , then roots of quadratic equation are:

In quadratic equation ax^(2)+bx+c=0 , if discriminant D=b^(2)-4ac , then roots of quadratic equation are:

ax^2 + bx + c = 0(a > 0), has two roots alpha and beta such alpha 2, then

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If alpha and beta (alpha lt beta) are the roots of the equation x^(2) + bx + c = 0 , where c lt 0 lt b , then

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

If alpha+beta=pi/2 and beta+ gamma = alpha , then find the value of tan alpha .

If alpha,beta are roots of x^2-px+q=0 then find the quadratic equation whose roots are ((alpha^2-beta^2)(alpha^3-beta^3)) and alpha^2beta^3+alpha^3beta^2