Home
Class 12
MATHS
Q. Let p and q real number such that p!=...

Q. Let p and q real number such that `p!= 0`,`p^2!=q` and `p^2!=-q`. if `alpha` and `beta` are non-zero complex number satisfying `alpha+beta=-p` and `alpha^3+beta^3=q`, then a quadratic equation having `alpha/beta` and `beta/alpha` as its roots is

A

`(p^(3)+q)x^(2)-(p^(3)+2q)x+(p^(3)+q)=0`

B

`(p^(3)+q)x^(2)-(p^(3)-2q)x+(p^(3)+q)=0`

C

`(p^(3)-q)x^(2)-(5p^(3)-2q)x+(p^(3)-q)=0`

D

`(p^(3)-q)x^(2)(5p^(3)+2q)x+(p^(3)-q)=0`

Text Solution

Verified by Experts

The correct Answer is:
C

`(alpha)/(beta)+(beta)/(alpha)=(alpha^(2)+beta^(2))/(alpha beta)=((alpha +beta)^(2)-2 alpha beta)/(alpha beta)`……….i
and given `alpha^(3)+beta^(3)=q, alpha + beta=-p`
`implies(alpha+beta^(3)=q,alpha + beta=-p`
`=(alpha +beta)^(3)-3alpha beta(alpha +beta)=q`
`implies-p^(3)+3p alpha beta=q` ltbr or `alpha beta=(q+p^(3))/(3p)`
`:.` From eq. (i) we get
`(alpha)/(beta)+(beta)/(alpha)=(p^(2)-(2(q+p^(3)))/(3p)/(((q+p^(3)))/(3p))=(p^(3)-2q)/((q+p^(3)))`
and product of the roots `=(alpha)/(beta). (beta)/(alpha)=1`
`:.` Required equation is `x^(2)-((p^(3)-2q)/(q+p^(3)))x+q=0`
or `(q+p^(3))x^(2)-(p^(3)-2q)x+(q+p^(3))=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta + 1 = 0 then tan alpha is equal to

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

If alpha+beta=pi/2 and beta+ gamma = alpha , then find the value of tan alpha .

The point of intersection of lines is (alpha, beta) , then the equation whose roots are alpha, beta , is

If alpha and beta are two distinet roots of the equation x^(2)-x+1=0 then alpha^(101)+beta^(107)= ....

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is