Home
Class 12
MATHS
Let alpha and beta be the roots of x^2-6...

Let `alpha` and `beta` be the roots of `x^2-6x-2=0` with `alpha>beta` if `a_n=alpha^n-beta^n` for ` n>=1` then the value of `(a_10 - 2a_8)/(2a_9)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B

`:'alpha^(2)-6alpha-2=0impliesalpha^(2)-2=6alpha`…..i
and `beta^(2)-6beta-2=0impliesbeta^(2)-2=6beta`…………ii
`:.(a_(10)-2a_(8))/(2a_(9))=((alpha^(10)-beta^(10))-2(alpha^(8)-beta^(8)))/(2(alpha^(9)-beta^(9)))`
`=(alpha^(8)(alpha^(2)-2)(-beta^(8)(beta^(2)-2))/(2(alpha^(9)-beta^(9)))`
`=(alpha^(8).6alpha-beta^(8).6 beta)/(2(alpha^(9)-beta^(9)))` [from Eqs i and ii ]
`=(6(alpha^(9)-beta^(9)))/(2(alpha^(9)-beta^(9)))=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to

Let alpha and beta be the roots of equation px^2 + qx + r = 0 , p != 0 .If p,q,r are in A.P. and 1/alpha+1/beta=4 , then the value of |alpha-beta| is :

Let alpha,beta be the roots of the equation x^2-p x+r=0 and alpha/2,2beta be the roots of the equation x^2-q x+r=0 , the value of r is

Let alpha and beta be the roots of x^2-x+p=0 and gamma and delta be the root of x^2-4x+q=0. If alpha,beta,a n dgamma,delta are in G.P., then the integral values of p and q , respectively, are

If alpha, beta be the roots of 4x^(2) - 16x + c = 0, c in R such that 1 lt alpha lt 2 and 2 lt beta lt 3 , then the number of integral values of c is

If tan alpha and tan beta are two solutions of x^(2)-px +q = 0, cot alpha and cot beta are the roots of x^(2)- rx +s = 0 then the value of rs is equal to

If alpha+beta=pi/2 and beta+ gamma = alpha , then find the value of tan alpha .

If alpha and beta are the roots of the equation x^2-4x + 1=0(alpha > beta) then find the value of f(alpha,beta)=(beta^3)/2csc^2(1/2tan^(- 1)(beta/alpha))+(alpha^3)/2sec^2(1/2tan^- 1(alpha/beta))

If alpha and beta are two distinet roots of the equation x^(2)-x+1=0 then alpha^(101)+beta^(107)= ....

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=0 where i=sqrt(-1) , the value of |alpha-beta|^(2) is