Home
Class 12
MATHS
Let for a != a1 != 0 , f(x)=ax^2+bx+c ,g...

Let for `a != a_1 != 0` , `f(x)=ax^2+bx+c` ,`g(x)=a_1x^2+b_1x+c_1` and `p(x) = f(x) - g(x)`. If `p(x) = 0` only for `x = -1` and `p(-2) = 2` then the value of `p(2)`.

A

18

B

3

C

9

D

6

Text Solution

Verified by Experts

The correct Answer is:
B

Given `p(x)=f(x)-g(x)`
`impliesp(x)=(a-a_(1))x^(2)+(b-b_(1))x+(c-c_(1))`
It is clear that `p(x)=0` has both equal roots `-1` then
`-1-1=-((b-b_(1)))/((a-a_(1)))`
and `-1xx-1=(c-c_(1))/(a-a_(1))`
`impliesb-b_(1)=2(a-a_(1))` and `c-c_(1)=(a-a_(1))`............i
Also given `p(-2)=2`
`=4(a-a_(1))-2(b-b_(1))+(c-c_(1))=2`..........ii
From eqs i and ii we get
`4(a-a_(1))-4(a-a_(1))+(a-a_(1))=2`
`:.(a-a_(1))=2`........iii
`impliesb-b_(1)=4` and `c-c_(1)=2`[from Eq. i ] ...iv
Now `p(2)=4(a-a_(1)+2(b-b_(1))+(c-c_(1))`
`=8+8+2=18` [from Eqs. iii and iv]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)= 3x^(2)-1 and g(x)= 3 + x . If f= g then the value of x is…….

Divide p(x) by g(x), where p(x) = x+3x^(2) -1 and g(x) = 1+x .

If P(x)=ax^2+bx+c , Q(x)=-ax^2+dx+c where ac!=0 then P(x).Q(x)=0 has

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let p(x) be a polynomial of degree 4 having extremum at x = 1,2 and lim_(x->0)(1+(p(x))/x^2)=2. Then find the value of p(2).

Let f(x)= x^(2)+ (1)/(x^(2)) and g(x)= x- (1)/(x), x in R -{-1, 0,1} . If h(x)= (f(x))/(g(x)) then the minimum local value of h(x) is…….

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

f and g are real functions defined by f(x)= 2x + 1 and g(x) =4x -7. If f(x) = g(x) then x = …. .

p(x) =x +2. Find p(1), p (2),p (-1) and p (-2). Which among 1,2,-1 and -2 becomes the 0 of p (x) ?