Home
Class 12
MATHS
If a in R and the equation -3(x-[x])...

If `a in R` and the equation `-3(x-[x])^2+""2""(x-[x])""+a^2=""0` (where [x] denotes the greatest integer x) has no integral solution, then all possible values of a lie in the interval (1) `(-1,""0)uu(0,""1)` (2) (1, 2) (3) `(-2,-1)` (4) `(-oo,-2)uu(2,oo)`

A

`(-2,-1)`

B

`(-oo,-2)uu(2,oo)`

C

`(-1,0)uu(0,1)`

D

`(1,2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`:'x-[x]={x}` [fractional part of `x`]
For no integral solution `{x}!=0`
`:.a!=0`……….i
The given equation can be written as
`3{x}^(2)-2{x}-a^(2)=0`
`implies{x}=(2+sqrt((4+12a^(2)))/6=(1+sqrt((1+3a^(2)))/3[:'0lt{x}lt1]`
`implies0lt(1+sqrt((1+3a^(2)))/3lt1impliessqrt(1+3a^(2)))lt2`
`impliesa^(2)lt1=-1ltalt1` ..........ii
From Eqs i and ii we get
`a epsilon(-1,0)uu(0,1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If 0 lt x lt 1000 and [x/2]+[x/3]+[x/5]=31/30x , (where [.] denotes the greatest integer function then number of possible values of x.

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

Find the values of x graphically satisfying [x]-1+x^(2)le0 where [.] denotes the greatest integer function.

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

If the equation sin^4x-(k+2)sin^2x-(k+3)=0 has a solution then k must lie in the interval;