Home
Class 12
MATHS
The sum of all real values of X satisfyi...

The sum of all real values of X satisfying the equation `(x^2-5x+5)^(x^2 + 4x -60) = 1` is:

A

6

B

5

C

3

D

`-4`

Text Solution

Verified by Experts

The correct Answer is:
C

`(x^(2)-5x+5)^(x^(2)+4x-60)=1`
Case I
`x^(2)-5x+5=1` and `x^(2)+4x-60` can be any real number
`impliesx=1,4`
Case II
`x^(2)-5x+c=-1` and `x^(2)+4x-60` has to be an even number ltbr gt`impliesx=2,3`
For `x=2,3`
For `x=3, x^(2)+4x-60` is odd `:.!=3`
Hence `x=2`
Case III `x^(2)-5x+5` can be any real number and
`x^(2)+4x-60=0`
`impliesx=-10,6`
`implies` Sum of all values o `x=1+4+2-10+6=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

The sum of all the real roots of the equation |x-2|^2+|x-2|-2=0 is

How many real numbers x satisfy the equation 3^(2x+2)-3^(x+3)-3^(x)+3 = 0 ?

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

The sum of values of x satisfying the equation (31+8sqrt(15))^((x^2)-3)+1=(32+8sqrt(15))^((x^2)-3) is

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

The number of real solution of the equation x^(2)=1-|x-5| is

The number of values of x in the interval [0, 3pi] satisfying the equation 2sin^2x + 5sin x- 3 = 0 is

The sum of all value of x so that 16^((x^(2)+3x-1))=8^((x^(2)+3x+2)) , is